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Miroslav Rozložńık Institute of Computer Science AS CR, Prague

Jurjen Duintjer Tebbens Institute of Computer Science AS CR, Prague
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Miroslav Tůma Institute of Computer Science AS CR, Prague

Conference secretary:
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Preface

This series of winter schools started in 2005 (it was coupled with the Seminar on Numerical
Analysis going back to 2003). Originally it was meant for a limited group of people around one
research project. We are very happy to see how the seed planted a few years ago has grown
into a healthy event which attracts more and more students as well as distinguished researchers
from the community. Moreover, the scope now covers a large area from modelling through
discretization and numerical analysis to computational methods, including optimization and
various applications. This is extremely important in particular at the time of overspecialization
and perhaps even fragmentation of research fields. Moreover, it demonstrates that there is no
division between theory and applications; they must stay together and benefit from each other.

This year our school will become truly international, and the complementary program of con-
tributed presentations and posters represents itself a small conference. With growing number of
participants, we will have to reconsider the format of the seminar part in the future, in order
to accommodate the number of contributions. We wish to emphasize the school part, as well as
give an opportunity for other presentations, using perhaps more than now the convenient form
of poster sessions. We wish also to keep our Moravian and Silesian / Bohemian biannual duality,
with the Academy of Sciences (ÚGN and ÚI), VSB-TU Ostrava, Czech Technical University
(Faculty of Civil Engineering) and Charles University (Faculty of Mathematics and Physics) as
the main organizers. We look forward to the SNA hosted in the very friendly environment in
the beautiful town Nové Hrady, as well as to the developments in the forthcoming years.

On behalf of the Programme and Organizing Committee of SNA 2010

Zdeněk Strakoš, Miro Rozložńık
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Stability of non unique solutions of the Coulomb friction problem . . . . . . . . . . . . . . . . . . 78
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Theoretical analysis of discrete contact problems with Coulomb friction . . . . . . . . . . . 101
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Modelling of the airflow through vocal folds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

I. Pultarová
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Multiscale modelling with Schwarz iterative methods

O. Axelsson, R. Blaheta, V. Sokol

Institute of Geonics AS CR, v.v.i., Ostrava, Czech Republic

1 Introduction

This paper considers the problem of finite element analysis of heterogeneous materials, especially
the case when samples with deterministically or stochastically given microstructure with scale ε
comparable with the mesh size h are tested numerically to evaluate the macroscale behaviour.
This analysis is computationally expensive because a fine dicsretization is used to capture the
(heterogeneity of) the microstructure and the solved problem involves the coefficient jumps. As
a consequence, the algebraic systems arising from the discretisation become ill–conditioned and
convergence of standard iterative methods deteriorates with oscillations of coefficients.

An illustration of this behaviour can be found in [6], where we perform numerical testing (homo-
genization) of mechanical properties of coal–resin geocomposites with the aid of GEM software [7]
using Schwarz–type parallel solvers.

In this paper, we shall consider another example of numerical testing of Darcy flow in hete-
rogeneous media. The microstructure in this example is generated stochastically, which allows
to investigate the influence of heterogeneity onto the convergence behaviour of iterative solvers
more systematically. The example was considered already in [5], where we investigated mixed
formulation of the problem and iterative solution by MINRES with an augmented–Lagrangian–
Schwarz preconditioning. See also [2], where this convergence behaviour is investigated theore-
tically.

Here we focus on standard (primal) formulation of the Darcy flow problem and behaviour of
Schwarz–type methods in the case of heterogeneous media.

2 Model problem and strip-like domain decomposition

Let us consider a model problem of saturated Darcy flow through a sample area (volume)
Ω = ⟨ 0, 1⟩ × ⟨ 0, 1⟩ . The flow is described by the equations

∇ · v = f, v = −k∇u in Ω , (1)

v · n = 0 on Γv = {x ∈ ∂Ω : x2 = 0 or x2 = 1} , (2)

u = 1 on Γu1 = {x ∈ ∂Ω : x1 = 0} , (3)

u = 0 on Γu2 = {x ∈ ∂Ω : x1 = 1} . (4)

The stochastic character is given by the permeability coefficient k . We shall assume that it is
a random field such that

z(x) = ln k(x) ∈ N(0, σ2) for any x ∈ Ω ,

which means that z(x) has normal distribution with the mean µ = 0 and the variance σ2 . This
variance will be a parameter for testing robustness of iterative solvers. We could also require
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a correlation for the random field k(x), see [5]. But for the purpose of testing the solvers, we
skip this requirement, which implementation needs an extra effort.

We assume that the problem (1) – (4) is discretized by means of linear triangular finite elements.
For simplicity, we assume that the domain Ω is divided into rectangular h × h elements which
are consequently divided by diagonals into triangular elements. The continuous, piecewise linear
functions on the given triangulation Th and zero on Γu1 ∪ Γu2 create the FE space Vh. Using
the standard nodal basis in Vh, we can derive the FE system

Au = b. (5)

Schwarz-type methods use overlapping decomposition of the domain Ω. In this paper, we consider
division of Ω into strips Ω0

i aligned with the FE grid. These strips are further extended to Ωδ
i

(symmetrically, if possible) by one or more layer of fine grid elements, see Fig. 1.

Note that strip–like subdomains are advantageous for efficient solution of subproblems by direct
solvers (using the advantage of small bandwidth) and simple communication pattern given by
at most two neighbours for each subdomain. Strips can be generalized to layers in 3D. They are
very natural for FE software oriented to structured grids (as GEM software [7]) but analogous
decomposition can be also defined for unstructured grids [8].
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Figure 1: Strip-like decomposition. Note that Ωδ
i has a minimal symmetric h-extension here

leading to overlap δ = 2h, 2h-extension is here maximal not increasing number of neighbours.

Using the overlapping decomposition Ωδ
k and in case of need also a coarse triangulation TH with

the corresponding FE space VH ≡ V0, it is possible to construct many variants of Schwarz–type
methods, see [4], [11]. These methods use decompositions of the FE space

Vh = V1 + . . .+ Vk one-level decomposition,

Vk = {v ∈ Vh, v ≡ 0 in Ω \ Ωδ
k} ,

Vh = V0 + V1 + . . .+ Vk two-level decomposition.

The simplest and most commonly used additive Schwarz preconditioning methods use precon-
ditioners BAS of one-level or two-level type,

B
(1)
AS =

m∑
k=1

RT
kA

−1
k Rk, B

(2)
AS =

m∑
k=0

RT
kA

−1
k Rk.
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For k = 1, . . . ,m, Rk is the restriction which selects degrees of freedoms lying
in Ω̄δ

k \ (Γu ∪ Γ0
k), where Γ0

k = ∂Ωδ
k ∩ Ω is the inner boundary of Ωδ

k, Ak is the FE matrix
corresponding to subproblem on Ωδ

k with homogeneous Dirichlet boundary conditions on Γ0
k.

For two-level preconditioner, RT
0 represents the prolongation induced by imbedding VH ⊂ Vh

and A0 is the FE matrix for VH .

3 Analysis of the Schwarz methods

The analysis of the Schwarz methods for SPD problems usually uses the Lion’s lemma ([4],[11])
and investigation of two properties

(P1) ∃K0 > 0 ∀v ∈ Vh ∃vk ∈ Vk , v = v1 + . . .+ vm :
∑

∥ vk ∥2a≤ K0 ∥ v ∥2a

(P2) ∃K1 > 0 ∀v ∈ Vh ∀vk ∈ Vk , v = v1 + . . .+ vm : ∥ v ∥2a≤ K1

∑
∥ vk ∥2a

where ∥ v ∥2a=
√
a(v, v), a is the SPD bilinear form from the variational formulation of the

problem (1) – (4). The constants can be used for estimation of the convergence or the condition
number of preconditioned systems, e.g.

cond(BASA) ≤ K0K1.

The estimation of K1 is easy. For our strip decomposition, we can take K1 = 3 for one-level de-
composition and K1 = 4 for two-level decomposition. The investigation of stability constant K0

usually use a decomposition of unity

1 =

m∑
k=1

θk, supp(θk) ⊂ Ωδ
k, ∥ θk ∥∞≤ 1, ∥ ∇θk ∥∞= O(δ−1)

and construct the decomposition of v ∈ Vh, v =
∑
vk, vk ∈ Vk with

vk = Πh(θkv) for one-level decomposition,

v0 = Qv, vk = Πh(θk(v − v0)) for two-level decomposition,

where Πh is linear interpolation C(Ω̄) → Vh, Q : Vh → V0 is e.g. a− or L2 projection. The
standard analysis then uses elementwise investigation and Friedrichs-type estimate.

For our model problem and strip-like decomposition, it is easy to construct θk such that θk ≡ 1
in Ωδ

k \
∪

i̸=k Ωi, θk ≡ 0 outside Ωδ
k and θk linearly varying across the overlaping part of Ωδ

k.

4 Conclusions

In this paper, we consider a model problem and strip-like domain decomposition which allows
to clarify the influence of heterogeneity on efficiency of Schwarz type methods. For one-level
Schwarz, the analysis with the above mentioned partition of unity suggests that heterogeneity
outside overlapping regions Ωδ

k ∩ Ωδ
i does not influence efficiency of Schwarz methods (with

exact subdomain solvers). On the other hand, if the heterogeneity in the overlapping regions
can not be avoided, then the overlap as big as possible (preserving condition of at most two
neighbours subdomains) could be advantageous. These properties are now verified by numerical
experiments. For two level methods, there is more possibilities for adaptation to heterogeneity
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and getting robust solvers, see e.g. [10], [1], [3]. Note that the defined strip decomposition is also
robust with respect to orthotropy if strips are orthogonal to the ”weaker”direction [9].

Acknowledgement: This work is supported by the grants GACR105/09/1830 of the Grant
Agency CR and the research plan AV0Z30860518 of the Academy of Sciences of the Czech
Republic.
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Flow over a rough surface

P. Bauer

Czech Technical University, Prague

Institute of Thermomechanics, AS CR, Prague

Abstrakt

We attempt to model a 2D rough surface by computing non-stationary Navier-Stokes
flow over a periodic pattern. The solution is obtained by means of finite element method
(FEM). We use non-conforming Crouzeix Raviart elements for velocity and piecewise con-
stant elements for pressure. The resulting linear system is solved by multigrid method. We
present computational studies of the problem.

1 Introduction

We consider a polygonal domain Ω ⊂ R2 composed of multiple canyons as an approximation
of a rough surface, and solve the incompressible Navier-Stokes equations for velocity u and
pressure p on [0, T ]× Ω:

∂u(t, x)

∂t
+ u(t, x) · ∇u(t, x)− ν△u(t, x) +∇p(t, x) = 0

∇ · u(t, x) = 0

u(0, x) = u0(x) x ∈ Ω

We set no-slip boundary condition for velocity on the terrain, Poiseuille profile on the inlet,
Neumann condition on the outlet, and slip condition on the upper boundary.

2 Weak formulation of Navier-Stokes equations

Let X = (H(1)(Ω))2, V (uin) = {u ∈ X : u |terrain= 0,u |inlet= uin,u |upper ·n = 0}, Q = L2(Ω).
We set the following forms:

(∇u,∇v) =
∫
Ω

2∑
i,j=1

∂ui
∂xj

∂vi
∂xj

, b(u,v,w) = 1
2

∫
Ω

2∑
i,j=1

(uj
∂vi
∂xj

wi − ujvi
∂wi
∂xj

).

We use the backward Euler difference for the time derivative ∂u(tn,x)
∂t ≈ un−un−1

τ where tn = nτ .
For each timestep tn, we seek un ∈ V (uin) and p

n ∈ Q, such that ∀v ∈ V (0), ∀q ∈ Q:

(un,v) + τb(un−1,un,v) + τ(∇un,∇v)− τ(pn,∇ · v) = (un−1,v)

(q,∇ · un) = 0

Let index h denote the respective finite-dimensional spaces V h(uin), Q
h, and the corresponding

functions un
h, p

n
h. We use the upwinding technique proposed by [2], based on dual elements Rl

given by the barycentric nodes of the original mesh (Fig. 1).
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We introduce wh ∈ V h(uin) to respresent inhomogeneous Dirichlet data. Taking vh = uh−wh ∈
V h(0), the discrete problem for each timestep tn rewritten in the matrix form stands:

Mvn
h + τN(un−1

h )vn
h + τAvn

h + τBTpnh = f̃ , (1)

Bvn
h = g̃,

where

f̃ = M(vn−1
h +wn−1

h −wn
h)− τN(un−1

h )wn
h − τAwn

h ,

g̃ = −Bwn
h .

3 Numerical solution using FEM

We choose non-conforming Crouzeix-Raviart elements (Fig. 1) to approximate the components
of velocity and piecewise constant elements for pressure.

Figure 1: a) Lumped regions, b) Crouzeix-Raviart element.

We use multigrid solver based on Vanka-type smoother to solve the linear system (1). An ex-
tension for higher order elements can be found in [3].

4 Numerical results

We consider a periodic pattern composed by seven square canyons. We show the development
of the flow over the pattern for Re = 104.

5 Conclusion

We investigate the flow over periodic structures as the means for parametrization of rough
surfaces in models of larger scale in cooperation with the Institute of Thermomechanics of the
Academy of Sciences of the Czech Republic.

Acknowledgement: This work has been supported by the research direction project Applied
Mathematics in Technical and Physical Sciences of the Ministry of Education of the Czech
Republic No. MSM6840770010.
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Figure 2: |u(t)| at time t = 24, 32, 40.
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On iterative QR pre–processing in the

parallel block–Jacobi SVD algorithm

M. Bečka, G. Okša, M. Vajteršic

Institute of Mathematics, Slovak Academy of Sciences, Bratislava

1 Introduction

Recently, an efficient version of the parallel two-sided block Jacobi SVD algorithm with pre-
processing was proposed in [4]. When computing all singular values together with all right and
left singular vectors of a rectangular matrix A, the pre-processing step consists of the parallel
computation of the QR factorization (QRF) with column pivoting (CP) followed Â by the
optional LQ factorization (LQF) of R-factor (this is called the QRLQ step). The parallel Â two-
sided block Jacobi method with dynamic ordering (cf. [1]) is then applied to the R-factor (or
L-factor). The purpose of pre-processing is to concentrate the Frobenius norm near the matrix
diagonal so that the Jacobi algorithm may need substantially less parallel steps for convergence
than in the case without pre-processing.

However, to perform optimally, Â the parallel Â QRF (or LQF) and the parallel two-sided block
Jacobi method need different data layouts. Having p processors, Â the Jacobi algorithm performs
very well when the matrix is distributed using the one-dimensional block column distribution. In
this case, most of the computations can be performed locally. But this data distribution is not
well suited for the serialized block column-oriented parallel QRF. Instead, a block cyclic matrix
distribution on a process grid r × c Â with p = rc, r, c ≥ 1, is needed so that all processors
remain busy during the whole parallel QR (or LQ) factorization.

Optimal parameters for the pre-processing step need to be found experimentally for a given
parallel architecture. For a cluster of modern computational nodes, it is shown that their values
are about nb = 100 and r ≤ c, r = max, i.e., r is maximized so that both r and c are as close
to

√
p as possible. Numerical experiments suggest that the efficiency of a pre-processing step

depends on the distribution of singular values (SVs). In contrast, the dependence on the condition
number κ is only mild. The optimal parameters were then used in the pre-processed parallel two-
sided block-Jacobi SVD algorithm; its performance was tested for six various distributions of
SVs and for well-conditioned (κ = 101) as well as ill-conditioned (κ = 108) random, square,
real matrices of order n = 4000 and 8000 using p = 8 and 16 processors, respectively, with
the constant ratio n/p = 500. The largest savings in the number of parallel iteration steps
needed for the convergence of the whole algorithm were obtained for matrices with a multiple
maximal/minimal SV regardless to κ. In these two cases, our algorithm performs better or
equally well as the ScaLAPACK routine PDGESVD. However, it is shown experimentally that
for other four distributions of SVs, the parallel two-sided block-Jacobi SVD algorithm with the
optimal pre-processing and dynamic ordering is about 1.2–2.3 times slower than the ScaLAPACK
routine.

The un-pivoted QRLQ pre-processing step can be re-formulated and extended to the QR ite-
ration (QRI). Using a limited number of QRI steps in the pre-processing can lead to even larger
reduction of the off-diagonal Frobenius norm and to the faster convergence of the subsequent
Jacobi algorithm with dynamic ordering for certain distributions of SVs. In the serial case, the
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use of the QRI for the estimates of SVs and singular vectors has been analyzed, e.g., in [2, 3]. To
our knowledge, up to now nobody extended its use as the pre-processing method for computing
the SVD in parallel. We have implemented the QRI in front of the parallel two-sided block-
Jacobi algorithm with dynamic ordering, and we report results for a set of matrices mentioned
above. In general, the use of about 6 QRI steps can be recommended before switching to the
Jacobi algorithm. Such a strategy can significantly decrease the total parallel execution time of
the whole algorithm.

2 Parallel algorithm with dynamic ordering

When using p processors and the blocking factor ℓ = 2p, a given matrix A is cut column-wise
and row-wise into an ℓ× ℓ block structure. Each processor contains exactly two block columns
of dimensions m× n/ℓ so that ℓ/2 SVD subproblems of block size 2× 2 are solved in parallel in
each iteration step.

At the beginning of each parallel iteration step, it is necessary to map one 2 × 2 block SVD
subproblem to each of p processors. This can be achieved by some type of ordering. The so-called
dynamic ordering is based on the maximum-weight perfect matching that operates on the ℓ× ℓ
updated weight matrixW using the elements ofW+W T , where (W+W T )ij = ∥Aij∥2F+∥Aji∥2F.
As shown in [1], this approach leads to a maximum decrease of the off-diagonal Frobenius norm
in each parallel iteration step. Moreover, the optimal algorithm for finding the ordering has
complexity O(ℓ3).

The convergence of the whole process can be enhanced by a suitable pre-processing of matrix A.
As discussed in [4], the QR factorization with column pivoting (QRFCP) can be applied to A
at the beginning of computation. Then, the SVD of the matrix R is computed by the PTBJA
with dynamic ordering. In the final step, some post-processing in the form of matrix-matrix
multiplication is required to obtain the SVD of A.

Alternatively, after the QRFCP of A, one can apply the LQF of R-factor (without column
pivoting). Next, the SVD of L is computed by our parallel PTBJA with dynamic ordering. To
obtain the SVD of A, two matrix-matrix multiplications are needed in the final post-processing
step.

The purpose of the pre-processing step is twofold. First, for rectangular matrices of order m×n,
m ≥ n, the R-factor (L-factor) is a square matrix of order n, which means that for m≫ n huge
savings in storage requirements, matrix multiplications and computation of 2 × 2 block SVDs
can be achieved. Second, after the QRFCP (followed by the optional QLF of the R-factor), the
Frobenius matrix norm is usually well concentrated near the matrix diagonal, so that only few
iteration steps in the parallel two-sided block-Jacobi algorithm are needed for convergence.

3 Optimal data layout for pre-processing

When using p processors with the matrix block cyclic distribution of type 1× p (i.e., the whole
block columns are stored in processors), it is immediately clear that the computation of the
block QRF is serialized and synchronized. When the blocking factor in the iterative part of the
Jacobi algorithm is ℓ = 2p (i.e., each processor stores two block columns), and the block size
for the QRF is nb, then processor i, 0 ≤ i ≤ p − 1, starts the QRF of its submatrix at step
2⌈n/ℓ⌉i and finishes it at step 2⌈n/ℓ⌉(i+ 1) (one step here means the processing of one matrix

18



column). During this computation, processor i sends 2⌈n/ℓ⌉/nb-times data to processors to its
right for computing updates. At any given time, only one processor computes the QRF; all other
processors are computing only the updates and they have to wait for data. As the computation
is column-oriented and proceeds from left to right, more and more processors become idle during
the computation of the block QRF. This is a highly inefficient use of the computational power.

To increase the efficiency in the pre-processing step, one should use a matrix cyclic block dis-
tribution with block size nb on a process grid r × c, r, c ≥ 1, with p = rc, where r and c is the
number of processors in a process row and column, respectively. This type of data distribution
is required by all ScaLAPACK matrix routines. Such a data distribution eliminates the synchro-
nization in computing the block QRF and can lead to a better use of computational resources
and thus to a faster computation. On the other side, the broadcast of updating data becomes
more complex because it needs to be done both across process rows and columns. Moreover, in
the triangularization of a given block column A1 of width nb, all processors in the appropriate
process column are involved and they have to communicate. Despite these differences as com-
pared with the process grid 1× p, the parallel block QRF (with or without column pivoting) on
a process grid r × c, r, c ≥ 1, p = rc, can take substantially less time.

We will report our results for all possible combinations of r and c for a given number of processors
p together with a variable block column width nb. Regardless to the number of processors and
distribution of singular values, the minimum total parallel execution time was achieved for
nb = 100 and the process grid r × c with r ≤ c, r closest to

√
p.

4 Numerical experiments with the optimal data layout

We have implemented the parallel two-sided block-Jacobi SVD algorithm (PTBJA) with pre-
processing on the Woodcrest Cluster at Regionales Rechenzentrum Erlangen (RRZE), Erlangen-
Nuernberg University, Germany. The Woodcrest Cluster consists of 217 computational nodes,
each with two Xenon 5160 Woodcrest chips (4 cores organized in 2 dual cores) running at
3.0 GHz. Each dual core contains 4 MB shared Level 2 cache, 8 GB of RAM and 160 GB of
local scratch disk. The Infiniband interconnection network has the bandwidth of 10 GBit/s per
link and direction.

Each test matrix was generated by the ScaLAPACK routine DLATMS as a matrix product using
a given distribution of SVs chosen from a group of six possible types, and two random orthogonal
matrices with elements from the normal distribution N(0, 1). Two condition numbers were used:
κ = 101 and κ = 108.

We will report and comment detailed results from our numerical experiments. These experiments
can be divided in two groups. In the first group, four variants of the PTBJA with dynamic
ordering were tested: without any pre-processing, with the pre-processing consisting of the QRF
with CP, and with the pre-processing where the QRF with/without CP was followed by the LQF
of R-factor. For matrices with a multiple maximal/minimal SV, the use of optimal parameters
in the pre-processing step (the QRF without CP following by the LQF of R-factor) enabled to
achieve the performance better or comparable to that of the ScaLAPACK routine PDGESVD. For
other distributions of SVs, even the QRFCP + the LQF of R-factor did not lead to a significant
decrease of a number of iterations so that the pre-processed PTBJA with dynamic ordering was
about 1.2–2.3 times slower than the ScaLAPACK routine PDGESVD.

In the second group of experiments, the un-pivoted QRLQ pre-processing was re-formulated and
extended to the QR iteration (QRI). There is a well-known connection between the QRI and
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the QR algorithm applied to a specific sequence of symmetric, positive definite matrices, which
enables to use the convergence theory of the QR algorithm for the explanation of experimental
results. Specifically, the convergence of the QRI is largely enhanced in the case of multiple SVs
(or cluster of close SVs) and in presence of large gap(s) between any consecutive SVs, which
is rather typical for ill-conditioned matrices. In such situation it can happen that the SVD is
computed only by using, say, 4 QRI steps, without invoking the Jacobi algorithm at all. In
general, the use of about 6 QRI steps can be recommended in the pre-processing, followed by
a (quite limited) number of parallel iterations in the Jacobi algorithm with dynamic ordering.
Such a strategy usually leads to a significant reduction of the total parallel execution time of
the whole algorithm for almost all six tested distributions of SVs.

Acknowledgments: Our special thanks go to Prof. Dr. Ulrich Ruede from Erlangen-Nuernberg
University for his kind permission and help in using the Woodcrest Cluster. First two authors
were supported by the grant no. APVV− 0532− 07 from the Agency for Science and Research,
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The presentation discusses mathematical modelling and numerical simulation of two classes of
free-boundary problems arising in material science, which are related to the microstructure for-
mation in solidification of crystalline materials, and to the dislocation dynamics in the crystalline
lattice.

The discussed problems occurring in the context of material science have a similar evolution
law. This law generally written in the form

vΓ = −κΓ + F,

is known to describe the motion of curves or surfaces by mean curvature (here denoted by κΓ,
whereas vΓ denotes the normal velocity and F a forcing term). The law together with its variants
including anisotropy is being extensively studied from the mathematical as well as application
viewpoint. We present formulation of mathematical models as well as their numerical solution
demonstrating agreement with the experimental understanding of the studied phenomena.
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Tvarová optimalizace pro 3D kontaktńı problém

diskretizovaný metodou hraničńıch prvk̊u

P. Beremlijski, M. Sadowská

Katedra aplikované matematiky, VŠB - Technická univerzita Ostrava

1 Úvod

V př́ıspěvku se zabýváme úlohou diskrétńı tvarové optimalizace trojrozměrného pružného tělesa
v jednostranném kontaktu s tuhou překážkou. Pro diskretizaci kontaktńı úlohy jsme použili
metodu hraničńıch prvk̊u. Aplikace metody hraničńıch prvk̊u na kontaktńı úlohy můžeme naj́ıt
např́ıklad v [2, 5]. Pro malý koeficient třeńı má diskretizovaná kontaktńı úloha s Coulombovým
třeńım jediné řešeńı, které je nav́ıc závislé lokálně lipschitovsky na ř́ıd́ıćı proměnné popisuj́ıćı
tvar pružného tělesa. Dı́ky jedinému řešeńı diskrétńı úlohy pro fixovanou ř́ıd́ıćı proměnnou,
můžeme použ́ıt tzv. př́ıstup implicitńıho programováńı, který je založen na minimalizaci ne-
hladké funkce složené z cenové funkce a jednoznačného zobrazeńı, které ř́ıd́ıćı proměnné přǐrazuje
řešeńı diskrétńı úlohy, tzn. stavové proměnné. Pro minimalizaci nehladké funkce jsme použili
bundle trust metodu. K źıskáńı subgradientńı informace, kterou metoda vyžaduje, je nutno
použ́ıt Morduchovičova a Clarkeova kalkulu.

2 Kontaktńı úloha s Coulombovým třeńım

Bud’ O zvolená tř́ıda omezených oblast́ı Ω ⊂ R3 s lipschitzovskou hranićı Γ složenou ze tř́ı
navzájem disjunktńıch část́ı Γd, Γn a Γc (viz obr. 1). Oblast Ω ∈ O je vyplněna homogenńım
izotropńım materiálem a má tvar

”
kvádru“ se spodńı volnou část́ı Γc = Γc(Ω), jej́ıž tvar bude na-

vrhován pomoćı zvolených př́ıpustných funkćı α : R 7→ R, kde R označuje pravoúhlý pr̊umět Ω
do roviny xy. Část hranice Γd ∪ Γn je pevná.

Obrázek 1: Geometrie oblasti Ω ∈ O.

Na Γd budeme uvažovat homogenńı Dirichletovu podmı́nku ve všech souřadných směrech, na Γn

p̊usob́ı povrchové śıly h ∈ [L2(Γn)]
3 a podél Γc je těleso

”
podepřeno“ tuhou překážkou R2 ×R−

(viz obr. 1), přičemž mezi tělesem a překážkou uvažujeme Coulombovo třeńı dané koeficientem F .
Funkce u(Ω) tedy vyhovuje systému homogenńıch rovnic rovnováhy Lu = 0 lineárńı homogenńı
izotropńı elastostatiky, předepsané Dirichletově resp. Neumannově podmı́nce na Γd resp. Γn,
unilaterálńım kontaktńım podmı́nkám

u3(x) ≥ −x3, T3(x) ≥ 0, T3(x)(u3(x) + x3) = 0 pro každé x = (x1, x2, x3) ∈ Γc(Ω),
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a Coulombovu zákonu třeńı{
pokud ut(x) := (u1(x), u2(x), 0) = 0, pak ∥Tt(x) := (T1(x), T2(x), 0)∥ ≤ FT3(x)

pokud ut(x) ̸= 0, pak Tt(x) = −FT3(x)ut(x)/∥ut(x)∥

pro každé x ∈ Γc(Ω). Vektor T(x) = (T1(x), T2(x), T3(x)) znač́ı povrchové napět́ı v x ∈ Γc(Ω).

3 Slabá hraničńı formulace stavového problému

Slabé řešeńı u ∈ [H1(Ω)]3 systému homogenńıch rovnic rovnováhy lineárńı homogenńı izotropńı
elastostatiky splňuje Green̊uv reprezentačńı vztah

ul(x) =

∫
Γ

(γ1u(y), Ul(x, y)) dsy −
∫
Γ

(γ0u(y), γ1,yUl(x, y)) dsy, x ∈ Ω, l = 1, 2, 3, (1)

kde U je fundamentálńı řešeńı lineárńı elastostatiky známé jako Kelvin̊uv tensor:

Ukl(x, y) :=
1 + ν

8πE(1− ν)

(
(3− 4ν)

δkl
∥x− y∥

+
(xk − yk)(xl − yl)

∥x− y∥3

)
, k, l = 1, 2, 3,

γ0 : [H1(Ω)]3 7→ [H1/2(Γ)]3 je operátor stopy a

γ1 : {v ∈ [H1(Ω)]3 : Lv ∈ [L2(Ω)]3} 7→ [H−1/2(Γ)]3

je operátor př́ıslušného povrchového napět́ı splňuj́ıćı pro v ∈ [C∞(Ω)]3

(γ1v)i (x) =
3∑

j=1

σij(v, x)nj(x), x ∈ Γ, i = 1, 2, 3;

nj(x) je složka vněǰśıho jednotkového normálového vektoru a σij je složka tensoru napět́ı.

Aplikaćı operátor̊u γ0 a γ1 na (1) źıskáme (dle [6]) hraničńı vztah

γ1u = S(γ0u) na Γ,

kde S : [H1/2(Γ)]3 7→ [H−1/2(Γ)]3 je Steklov̊uv-Poincarého operátor, který lze reprezentovat
jako

S = D + (
1

2
I +K ′)V −1(

1

2
I +K);

V je operátor jednoduché vrstvy, K je operátor dvojvrstvy, K ′ je operátor adjungovaný ke K
a D je tzv. hypersingulárńı operátor. Definice a vlastnosti těchto operátor̊u jsou k nalezeńı v [6].

Definujme nyńı W (Ω) := [H
1/2
0 (Γ(Ω),Γd)]

3 a X(Ω) := {φ ∈ L2(R) : existuje v ∈W (Ω) takové,
že na Γc(Ω) plat́ı φ = v3}. Bud’ dále X ′

+(Ω) kužel kladných funkcionál̊u z duálu X ′(Ω). Slabým
hraničńım řešeńım kontaktńıho stavového problému z 2. kapitoly rozumı́me libovolnou dvojici
(u, λ) ∈W (Ω)×X ′

+(Ω) vyhovuj́ıćı systému
∫

Γ(Ω)

(Su, v− u) ds+ ⟨Fλ, ∥v̂t∥ − ∥ût∥⟩ ≥
∫
Γn

(h, v− u) ds+ ⟨λ, v̂3 − û3⟩ ∀v ∈W (Ω)

⟨µ− λ, û3 + α⟩ ≥ 0 ∀µ ∈ X ′
+(Ω),

kde ⟨·, ·⟩ je dualitńı párováńı mezi prostory X(Ω) a X ′(Ω), v̂3(x
′) := v3(x

′, α(x′)) a v̂t(x
′) :=

(v1(x
′, α(x′)), v2(x

′, α(x′)), 0), x′ ∈ R.

23



4 Diskrétńı tvarová optimalizace pro kontaktńı úlohu s Coulom-
bovým třeńım

Než si zformulujeme naši úlohu tvarové optimalizace, zapǐsme náš stavový problém formou zo-
becněné rovnosti. K tomu diskretizujeme stavovou úlohu a poté zavedeme rozděleńı vektoru
posunut́ı u na (ut,uν), kde ut př́ısluš́ı tečnému posunut́ı a uν odpov́ıdá normálovému posunut́ı.
Následně vyeliminujeme volné uzly, tj. budeme se zabývat pouze kontaktńımi uzly (jejich počet
je p). Diskretizovanou stavovou úlohu můžeme popsat zobrazeńım S : α ∈ Rd → (ut,uν ,λ) ∈
R4p (tvaru oblasti Ω, který je určen ř́ıd́ıćım vektorem α ∈ Uad, je přǐrazeno řešeńı kontaktńı
úlohy s Coulombovým třeńım (ut,uν ,λ) (stavové proměnné)). Zobrazeńı S je pro malé koefici-
enty třeńı lokálně lipschitzovské. Diskretizovanou stavovou úlohu můžeme ekvivalentně popsat
zobecněnou rovnost́ı:

0 ∈ Att(α)ut +Atν(α)uν − Lt(α) + Q̃(ut,λ)
0 = Aνt(α)ut +Aνν(α)uν − Lν(α)− λ
0 ∈ uν +α+NRp

+
(λ),

(2)

kde A(α) ∈ R3p×3p a L(α) ∈ R3p jsou matice tuhosti a vektoru pravé strany, které jsme źıskali
po diskretizaci stavové úlohy metodou hraničńıch prvk̊u,

Q̃(ut1,ut2,λν) = ∂(ut1,ut2)j(ut1,ut2,λν), j(ut1,ut2,λν) = F
p∑

i=1

λi||(ui
t1,u

i
t2)||

a NRp
+
je standardńı normálový kužel.

Nyńı si popǐsme úlohu tvarové optimalizace. Hledáme návrhovou proměnnou α ř́ıd́ıćı tvar
Beziérovy plochy, kterou je určena kontaktńı hranice Γc, tzn. i tvar tělesa Ω, pro kterou nabývá
cenový funkcionál J (α,S(α)) svého minima. Úlohu diskrétńı tvarové optimalizace pro kontaktńı
úlohu s Coulombovým třeńım pak poṕı̌seme takto:

minΘ(α)

s omezeńım
α ∈ Uad,

kde Θ(α) := J (α,S(α)). Necht’ funkcionál J je spojitě diferencovatelný. K řešeńı této ne-
hladké úlohy byla použita bundle trust metoda. Tato iteračńı metoda potřebuje rutinu, která
v každém kroce vypočte hodnotu cenového funkcionálu (k tomu potřebujeme vyřešit diskre-
tizovanou stavovou úlohu) a jeden (libovolný) Clarke̊uv subgradient z Clarkeova zobecněného
gradientu ∂Θ(α). Pro jeho konstrukci použijeme tvrzeńı

∂Θ(α) = ∇1J (α,S(α)) + {C T∇2J (α,S(α))|C ∈ ∂S(α)}

(viz [3]). Dále využijeme nehladkého kalkulu B. Morduchoviče (viz [4]).

Protože plat́ı ∅ ̸= D∗S(α)(y∗) pro všechna y∗ a conv (D∗S(α)) (y∗) = {C Ty∗|C ∈ ∂S(α)},
stač́ı nalézt jeden prvek z množiny D∗S(α)(∇2J (α,S(α))). Hledáńı prvk̊u limitńı koderivace

D∗S(α)(y∗) := {x ∗ ∈ Rd | (x ∗,−y∗) ∈ NGr S(α)},

kde Gr S je graf S a NGr S je limitńı normálový kužel, je značně komplikované a využ́ıvá se při
něm zápisu zobrazeńı S pomoćı zobecněné rovnosti (2) (podrobně viz [1]).
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5 Závěr

Ve 3D úloze tvarové optimalizace neńı možné pro citlivostńı analýzu využ́ıt po částech spojitou
diferencovatelnost zobrazeńı S, které ř́ıd́ıćımu vektoru přǐrazuje stavové proměnné, jako ve 2D
verzi této úlohy. Proto jsme pro citlivostńı analýzu optimalizačńı úlohy, kterou se zabýváme
v této práci, museli použ́ıt Morduchovičova kalkulu. Pro citlivostńı analýzu je nutné vypoč́ıst
parciálńı derivace matice tuhosti a vektoru pravé strany, které źıskáme při diskretizaci stavové
úlohy metodou hraničńıch prvk̊u, podle jednotlivých ř́ıd́ıćıch proměnných. V této práci jsme tyto
derivace źıskali numericky. V budoucnu bychom chtěli odvodit vztahy pro analytický výpočet
těchto derivaćı.

Poděkováńı: Tato práce byla podpořena GA ČR 201/07/0294 a MŠMT MSM6198910027.
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A parametric study of the dimensionless
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1 Introduction

In the original model introduced in [1], the solution depends on ten parameters. The dimension-
less formulation significantly reduces the number of parameters only to four. Another obvious
advantage is the formulation independency on the model scale.

We study the dependence of the solution of the dimensionless formulation on a given parameter
set. All simulations are performed in Matlab software package, namely we use a modified version
of the program developed by Petri T. Piiroinen and Yuri A. Kuznetsov, see [3].

2 Transformation of the model equations into a dimensionless
form

Let us start with the original dimensional Filippov system that describes the closed gas-liquid
system. For the detailed derivation of the model equations, see [1], [2].

F :
d

d t

(
MG

ML

)
=

 f (1)(MG,ML), φ(MG,ML) < 0,

f (2)(MG,ML), φ(MG,ML) > 0,
(1)

where

f (1) =

 FG − kGx

(
MGRT

V −ML/ρL
− Pout

)
FL

 , (2)

f (2) =

 FG

FL − kLx

(
MGRT

V −ML/ρL
− Pout

)  , (3)

φ(MG,ML) =ML − ρLVd. (4)

Let p = (FG, FL, ρL, V, Vd, T, Pout, x, kL, kG)
T, p ∈ R10, be a row vector of the parameters. We

consider the Filippov system F dependent on p:

F(p) :
d

d t

(
MG

ML

)
=

 f (1)(MG,ML, p), φ(MG,ML, p) < 0,

f (2)(MG,ML, p), φ(MG,ML, p) > 0,
(5)

where

f (1)(MG,ML, p) =

 FG − kGx

(
MGRT

V −ML/ρL
− Pout

)
FL

 , (6)
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f (2)(MG,ML, p) =

 FG

FL − kLx

(
MGRT

V −ML/ρL
− Pout

)  , (7)

φ(MG,ML, p) =ML − ρLVd. (8)

Now, we can define the dimensionless state variables M̃G, M̃L, t̃,

MG :=M◦
G M̃G, ML :=M◦

L M̃L, t := t◦ t̃. (9)

If we choose the scaling

FG
t◦

M◦
G

= 1, FL
t◦

M◦
L

= 1,
ρLV

M◦
L

= 1, (10)

we obtain a row vector of the dimensionless parameters p̃ = (αG, αL, βL, βG, γ)
T, p̃ ∈ R5, where

αG = kGx
t◦M◦

GRTρL
(M◦

L)
2

= kGx
FGRTρL

F 2
L

, (11)

αL = kLx
t◦M◦

GRTρL
(M◦

L)
2

= kLx
FGRTρL

F 2
L

, (12)

βL = kLxPout
t◦

M◦
L

=
kLxPout

FL
, (13)

βG = kGxPout
t◦

M◦
L

=
kGxPout

FL
, (14)

γ =
Vd
V
. (15)

The dimensionless Filippov system F̃ dependent on p̃ ∈ R5 has the form:

F̃(p̃) :
d

d t̃

(
M̃G

M̃L

)
=

 f̃ (1)(M̃G, M̃L, p̃), φ(M̃G, M̃L, p̃) < 0,

f̃ (2)(M̃G, M̃L, p̃), φ(M̃G, M̃L, p̃) > 0,
(16)

where

f̃ (1)(M̃G, M̃L, p̃) =

 1− αG
M̃G

1− M̃L

+ βG

1

 , (17)

f̃ (2)(M̃G, M̃L, p̃) =

 1

1− αL
M̃G

1− M̃L

+ βL

 , (18)

φ(M̃G, M̃L, p̃) = M̃L − γ. (19)

It is useful to separate the parameters FG and FL in (11) and (12) in such a way that they may
vary independently. Let us set

K :=
kG
kL

, (20)

M :=
αL

β2L
=
FGRTρL
kLxP 2

out

. (21)
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We can express αL and βG from these two equations,

αL =Mβ2L , (22)

βG = KβL. (23)

We obtain four dimensionless parametrs, i. e. the row vector q̃ = (M,K, βL, γ)
T, q̃ ∈ R4. The

resulting dimensionless Filippov system F̃ then depends only on q̃. It has the form

F̃(q̃) :
d

d t̃

(
M̃G

M̃L

)
=

 f̃ (1)(M̃G, M̃L, q̃), φ(M̃G, M̃L, q̃) < 0,

f̃ (2)(M̃G, M̃L, q̃), φ(M̃G, M̃L, q̃) > 0,
(24)

where

f̃ (1)(M̃G, M̃L, q̃) =

 1−KMβ2L
M̃G

1− M̃L

+KβL

1

 , (25)

f̃ (2)(M̃G, M̃L, q̃) =

 1

1−Mβ2L
M̃G

1− M̃L

+ βL

 , (26)

φ(M̃G, M̃L, q̃) = M̃L − γ. (27)

3 Conclusions

We manage to reduce the number of parameters from ten to only four. The system F̃(q̃) exhibits
a certain slow-fast character. In simulations, it turned out, that two of these parameters, namely
M and βL, substantially affect the behaviour of the system.

Acknowledgement: The work is a part of the research project MSM 6046137306 financed by
MSMT, Ministry of Education, Youth and Sports, Czech Republic.
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Parameter identification in heat flow with a geo-application

R. Blaheta, R. Kohut

Institute of Geonics AS CR, v.v.i., Ostrava, Czech Republic

1 Introduction

Problems of identification of material parameters (mostly parameters appearing in constitutive
relations) have application in many fields of engineering including investigation of processes in
a rock mass. This paper outlines the structure of parameter identification problems, methods
for their solution and describes an identification problem from geotechnics, which will serve
as a realistic model example for the showing behaviour of a selected parameter identification
method.

Most generally, the identification problems appear in investigation of physical processes in mate-
rial environment. The processes are described by the state variables u and driven by the control
variables f . The material is characterized by parameters κ. Direct problems focus on compu-
tation of u = uh(κ) = uh(κ, x, t), where (x, t) gives space and time localization, if f and κ are
known. On the opposite, identification problems use the knowledge of f and some partial apriori
knowledge on the state variable u for (partial or full) determination of κ.

If the apriori information about the state variable u is given by the vector d = (di) of measured
values di ∼ u(xi, ti), then the search for the unknown material parameters can be formulated as
the following minimization problem

f(κ) =∥ Muh(κ)− d ∥−→ min
κ∈K

. (1)

Above, M is an observation operator, which select from uh values corresponding to d.

In contrary to direct problems, it is known that some identification problems are not well posed,
which means that some of the following properties can be violated:

• there exists solution of the problem,

• the solution is unique,

• the solution is stable under small changes of input data.

Although the properties of the minimization problems can be difficult to analyse, a lot of different
iterative techniques can be used for the minimization (1) (mostly without theoretical proof of
convergence). The range of applicable methods includes

• gradient methods, e.g. Gauss-Newton, Levenberg-Marquardt, conjugate gradients, see [3],
[4], [6], [7],

• gradient-free direct method, e.g. Nelder-Mead simplex method [3],

• stochastic methods e.g. [5], genetic algorithms e.g. [6].

In this paper, we shall show the solution of the identification problem, described in the next
section, by means of least-square formulation (1) and application of the Nelder-Mead algorithm.
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2 A model identification problem

The in-situ Äspö Pillar Stability Experiment (APSE) has been performed at SKBs Äspö Hard
Rock Laboratory in south eastern Sweden with the aid of investigation of granite mass damage
due to mechanical and thermal loading. The measured data are now used for validation of
mathematical models within the DECOVALEX 2011 international project. APSE used electrical
heaters to increase temperatures and induce stresses in a rock pillar between holes (Fig. 1)
until its partial failure. To determine accurately the temperature changes, a heat flow model is
formulated and monitored temperatures are used for identification of heat flow parameters (heat
capacity, heat conduction coefficient, heat convection into the holes). The identification should
provide parameters taking into account water bearing fractures and water flow and calibrate the
model. More details and another approach to the model calibration can be found in [1].

dry
side

wet
side

Figure 1: The APSE model - detail of the FE grid around the pillar (GEM software [2]) and
plan view on the pillar, holes, location of heaters and points of temperature measurement.

The exploited APSE model, realized by GEM software [2], considers domain of 105×125×118 m
and 99 × 105 × 59 nodes. The grid is refined around the pillar, see Fig. 1. The heaters are
producing heat which varies in time. The model assumes original temperature 14.5◦C on the
outer boundaries, zero flux onto the tunnel and nonzero flux given the convection onto the holes.
The initial condition is given again by the temperature 14.5◦C.

Monitoring of the temperatures during two month heating phase of APSE is essential for calib-
ration of the thermal model. There are 14 temperature monitoring positions and temperatures
are measured in 12 time moments. Altogether 168 values of temperature measurement (vector d)
are used for parameter identification, which according to (1) can be written as follows

f = f(λ1, c1, λ2, c2, λ3, c3,H1,H2,H3) =

(∑
i

[uh(xi, ti)− di]
2

)0.5

−→ min . (2)

The material parameters represent different conductivity λ and heat capacity c for dry and wet
side of model (according to Fig.1.). The rock in the right hole had yielded from a depth of
approximately 0.5 m down to 3 m which motivates to introduce third type of material with
different λ and c for the damaged part of the pillar. We supposed heat conduction between rock
and air in excavated holes determined by different values of the heat conduction coefficient H for
individual holes with third coefficient corresponding to surface for the above mentioned damaged
part of the pillar. It gives 9 material parameters of the cost functional f in (2).
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3 The optimization method and numerical results

For finding the minimum (or at least realizing sufficient decrease) of the cost functional (1), (2) re-
presenting agreement between the measured and computed values, we use Nelder-Mead simplex
method, see e.g. [3]. To guarantee the positivity of the parameters, we use exponential transfor-
mation, i.e. finding x such that p = ex is the required parameter. As the parameters have quite
different orders, we scale the capacity c for having all parameters in order of units.

The Nelder-Mead iterations are stopped when both decrease of the cost functional f is small
(below εf ) and changes of parameters are small (below εp). To find very accurate approximation
of the parameters, we stop iterations with εf = 0.001 and εp = 0.01. With a physical initial
guess, it requires 764 iterations. The reached minimum value was f = 33.599. The obtained
material parameters can be seen in Table 1, the convergence behaviour is illustrated in Fig. 2.

We also tested the sensitivity of the cost functional F to change of individual parameters in the
vicinity of the computed optimum, i.e. we fixed 8 values from Table 1 and show dependence
of f on the remaining one. In Fig. 3, we can see that with respect to λ1 and c1, we get stable
minimum (a similar observation is for λ2 and c2). For H1 and similarly for λ3 and c3, H2 and H3

the minimum is unstable.

λ1 c1 λ2 c2 λ3 c3 H1 H2 H3

2.988 2.518e06 4.697 1.167e06 6.556 4.292e06 5.364 5.696 24.901
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4 Conclusions

The paper describes (1) philosophy of the solution of the identification problems, (2) an ap-
plication of parameter identification for computation of temperatures in geotechnical problem,
where the heat flow take place in complex geologic mass, but where some monitoring data are at
disposal (3) behaviour of Nelder-Mead optimization algorithm and question of proper stopping
criteria, (4) importance of a suitable choice of parameters to be identified with respect to stabi-
lity of the minimum of the least-square cost functional. Note that our geotechnical problem can
be successfully optimized with only four parameters (λ1, c1, λ2, c2). The Nelder-Mead method
was observed to be able to converge with both physical and non-physical initial guess.

For future, similar identification problems will be applied to another geotechnical problems. As
the computational cost is relative high (about 100 iterations requiring solution of mostly one
direct problem), we would like to test also the other optimization techniques, especially those
involving higher level of parallelism. So far, our method is implemented in GEM software with
parallelism exploited in solving the linear systems.
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Numerical schemes for river flood modelling

M. Brandner, J. Egermaier, H. Kopincová

Departments of Mathematics

University of West Bohemia, Plzeň

1 Introduction

The river flow models are often formulated as one-dimensional problems. In the case of the river
flood simulations, it is more convenient to use two-dimensional approach. There are a lot of
efficient numerical schemes with different properties. In addition to important properties like
conservation, consistency and stability these numerical schemes should satisfy some other ones
- positive semidefinitness and computational efficiency especially for wet/dry problems which
occur on the whole shoreline.

2 Mathematical model

For the river flood modelling we use two dimensional Saint-Venant equations with the frictional
terms

ht + (hu)x + (hv)y = 0,

(hu)t +

(
hu2 +

1

2
gh2
)

x

+ (huv)y = −ghBx − gM2hu
√

(hu)2 + (hv)2

h7/3
(1)

(hv)t + (huv)x +

(
hv2 +

1

2
gh2
)

y

= −ghBy − gM2hv
√

(hu)2 + (hv)2

h7/3
,

where h = h(x, y, t) is the unknown water level, u = u(x, y, t) and v = v(x, y, t) are the orthogo-
nal velocities of the water flow in the x and y directions, g = 9.81, B = B(x, y) represents the
bottom topography and M is the Mannings coefficient depending on the substrate.

The system can be simply written in the matrix form

ut + [f(u)]x + [g(u)]y = ψ(u, x, y), (2)

In the following we suppose the Saint-Venant equations without the frictional terms (the terms
containing Mannings coefficient). This terms can be included by fractional stepping.

3 Numerical schemes

We use finite volume methods with the integral averages of the unknown functions on the cells
Dij = [xj−1/2,k, xj+1/2,k]× [yj,k−1/2, yj,k+1/2] of the rectangular grid with the steps ∆x and ∆y.
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Un
j,k ≈ 1

∆x∆y

∫
Dij

u(x, y, tn)dxdy, Fn
j+1/2,k ≈ 1

∆t

tn+1∫
tn

f(u(xj+1/2, yk, t))dt,

Gn
j,k+1/2 ≈

1

∆t

tn+1∫
tn

g(u(xj , yk+1/2, t))dt, Ψn
j,k ≈ 1

∆x∆y∆t

tn+1∫
tn

∫
Dij

ψ(u, x, y)dxdydt. (3)

3.1 Central-upwind

For updating the unknown functions we use the scheme in the form

d

dt
Uj,k +

1

∆x
[Fj+1/2,k − Fj−1/2,k] +

1

∆y
[Gj,k+1/2 −Gj,k−1/2] = Ψj,k, (4)

with the consistent numerical fluxes. It is also important choose a suitable reconstruction of the
unknown functions. In this case we use the following one (for water level)

H−
j+1/2,k = max(0,Hj,k +Bj,k −Bj+1/2,k),H

+
j+1/2,k = max(0, Hj+1,k +Bj+1,k −Bj+1/2,k), (5)

H−
j,k+1/2 = max(0,Hj,k +Bj,k −Bj,k+1/2),H

+
j,k+1/2 = max(0, Hj,k+1 +Bj,k+1 −Bj,k+1/2), (6)

where
Bj+1/2,k = max(Bj,k, Bj+1,k), Bj,k+1/2 = max(Bj,k, Bj,k+1). (7)

This reconstruction ensures positive semidefinitness of the method and allows us to solve problem
of dry states (solution between wet and dry cells) by the same procedure as problem between
two wet cells. This has the positive influence on the computing time.

In order to preserve special steady state ”rest at lake”(u = v = 0 a h + B = const.) it is used
special discretization of the source term (see [2]). In this steady state we have(

1

2
gh2
)

x

= −ghBx,

(
1

2
gh2
)

y

= −ghBy. (8)

By the integrating (8) we obtain

−

xj+1/2∫
xj−1/2

ghBxdx ≈ 1

2
g(H−

j+1/2,k)
2 − 1

2
g(H+

j−1/2,k)
2, (9)

−

yk+1/2∫
yk−1/2

ghBydx ≈ 1

2
g(H−

j,k+1/2)
2 − 1

2
g(H+

j,k−1/2)
2. (10)

Therefore the approximation of the source term has the form

Ψj,k =


0

g
2∆x

(
(H−

j+1/2,k)
2 − (H+

j−1/2,k)
2
)

g
2∆y

(
(H−

j,k+1/2)
2 − (H+

j,k−1/2)
2
)
 (11)

and it is consistent in the following sense

∆xΨj = −ghj∆Bj +O(∆Bj). (12)
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3.2 Augmented system

This method is in detail described in [1]. It is based on augmented formulation (we add the
fluxes and function B(x, y) as the unknown functions). Then we solve the system

wt +C(w)wx +D(w)wy = 0, (13)

where the vector of unknown functions is

w =

[
h, hu, hv, huv, hu2 +

1

2
gh2, hv2 +

1

2
gh2, B

]T
. (14)

The method is based on the approximate Riemann solver which decomposes the jumps of
unknown function and then we construct the fluctuations

C−W±
j+1/2,k =

7∑
p=1

min{spC , 0}α
p
Cr

p
C , C+W±

j+1/2,k =
7∑

p=1

max{spC , 0}α
p
Cr

p
C , (15)

D−W±
j,k+1/2 =

7∑
p=1

min{spD, 0}α
p
Dr

p
D, D+W±

j,k+1/2 =

7∑
p=1

max{spD, 0}α
p
Dr

p
D, (16)

where spC and spD are approximations of wave speeds, rpC and rpD are approximations of the eigen-
vectors od Jacobian matrixes and αp

C and αp
D are coefficients based on jumps decompositions.

To update the solution we use the scheme

Wn+1
j,k = Wn

j,k −
∆t

∆x
(C+W±

j−1/2,k +C−W±
j+1/2,k)−

∆t

∆y
(D+W±

j,k−1/2 +D−W±
j,k+1/2). (17)

Special approximations of the eigenvectors of the approximate Jacobian matrix of the augmented
system ensures preserving all steady states, if one of velocities u or v is identically zero.

One of the most important problems in river flood modelling is correct solution of dry cells
problem. Suppose HL > 0 and HR = 0 in one direction. If we use the method on the wet/dry
front by the standard way (i.e. like for solution between two wet cells), it can produce spurious
results. Especially in the cases where HL+BL < BR can be incorrectly inundate some dry cells.
That we can determine the correctly inundate cells, in [1] there is described additional Riemann
problem to obtain the middle state h∗. This problem is defined

BR = BL = 0, HR = HL, UR = −UL. (18)

Then the middle state h∗ is

h∗ =
(HU)L − (HU)R + s2HR − s1HL

s2 − s1
= HL +

HLUL√
gHL

, (19)

because the consistent speeds in this problem are s1 = −
√
gHL and s2 =

√
gHL. If h

∗ > BR

the the right cell will be inundate and we can solve the Riemann problem by the method of
augmented system with the original values. However, if h∗ ≤ BR then the right cell remains dry
and we use only left going waves from the additional Riemann problem to update the left cell.

If we solve the additional Riemann problem the middle state h∗ represents the maximum of the
water elevation. The solution of the additional Riemann problem by the method of augmented
system is

Hn+1
L = HL +

∆t

∆x
HLUL. (20)
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It is easy to see, that the Hn+1
L = h∗ only if ∆t

∆x = 1√
gHL

. But the time step ∆t has to satisfy

the CFL stability condition

max
p

{spj}
∆t

∆x
≤ 1, ∀j (21)

so the value Hn+1
L ≤ h∗ and give more accurate information if water level is so high to inundate

the dry cell in the time tn +∆t.

4 Conclusion

We use two numerical schemes for river flood modelling. The central-upwind method is very
robust and due to special reconstruction of unknown functions is positive semidefinite and solves
the problems on the wet/dry front without any additional conditions. But it preserves only
special steady state ”rest at lake”. The method of augmented system preserves general steady
states in one-dimensional problems and some steady states in the two-dimensional ones. But it is
necessary to solve additional problem to correct inundation of dry cells. The complete algorithm
is more sophisticated but also complicated and it needs longer computing time.
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Selection strategy for fixing nodes in FETI-DP method
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1 Introduction

Nowadays, large scale numerical analyses are popular in the engineering community. These ana-
lyses have large demands on the computer capacity. It brings necessity of using of parallel com-
puters. Parallel computers offer large computer memory capacity and computer power. Domain
decomposition methods are the most popular numerical methods for solution of wide spectrum
of engineering problems on parallel computers. The FETI-DP method is one of non-overlapping
domain decomposition methods. This contribution deals with selection strategy for fixing no-
des in FETI-DP method. Fixing nodes in the FETI-DP method are needed for non-singular
subdomain matrices.

2 FETI-DP method

The FETI-DP (Dual-Primal Finite Element Tearing and Interconnecting) method is one of non-
overlapping domain decomposition methods. The method decomposes the original domain into
smaller subdomains. This method was introduced by Farhat and coworkers in the article [1].
Development of the method was motivated by difficulties with singular matrices in the original
FETI method and complicated modifications due to time-dependent problems with mass or
capacity matrices. The FETI-DP method is based on combination of the FETI method and
the Schur complement method. The unknowns in the problem are split into two parts. Namely,
the fixing and remaining unknowns. The remaining unknowns are further split into the internal
and interface unknowns. The continuity condition among subdomain boundaries is enforced by
Lagrange multipliers, which are defined between interface remaining unknowns. In the case of
fixing nodes, the continuity is enforced by a special ordering of unknowns. Internal unknowns
are eliminated and a coarse problem is obtained. The coarse problem is solved by the conjugate
gradient method. More information about the FETI-DP method can be found in the article [1]
or in the book [3].

3 Fixing nodes

Selection of the fixing unknowns deserves a special attention. The fixing unknowns have to be de-
fined in such a way that the subdomain matrix obtained after removing of the rows and columns
belonging to the fixing unknowns is nonsingular. It is clear that there are many possibilities of
the fixing unknown definition.

In the case of regular rectangular domains and subdomains, the definition of the fixing unknowns
is simple. The unknowns are defined in the corners of the subdomains. In all other cases, the
situation is more complicated. Recently, strong influence of the definition of the fixing unknowns
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on the condition number of the subdomain matrix has been observed [2]. The large condition
numbers of subdomain matrices significantly deteriorate the convergence of the iterative methods
used for the solution of the coarse problem.

4 Algorithm for selection of fixing nodes

4.1 Algorithm for 2D problems

The proposed algorithm for fixing node selection in 2D has three steps. It is based purely on the
knowledge of finite element mesh. In the first step, nodes belonging to more than two subdomains
are selected. When the fixing nodes are selected, the number of fixing nodes on each subdomain is
checked. Plane strain and plane stress problems require two different interface nodes, three nodes
are better for plate problems. Therefore, the minimum number of nodes is three. If there are
enough nodes, their mutual distances are computed and compared with estimates of subdomain
lengths. If the selected nodes are too close each other, the subdomain matrix has usually very
large condition number. If there are subdomains with less than the minimum number of fixing
nodes or if the selected fixing nodes do not satisfy geometric conditions, the second step of the
algorithm is performed. Interface nodes with only one adjacent interface node are selected as
additional fixing nodes. This step selects nodes, where some interface curve starts. The number
of selected nodes after two steps of the algorithm can be assumed as the minimum number
of nodes. From the mechanical point of view, selected nodes can be assumed as fixed nodes.
Additional fixing nodes can be obtained by the third step of the selection algorithm. In order
to select additional nodes, nodes belonging to interface curves have to be found. These nodes
are denoted as the interface curve nodes (IC nodes). The first and last interface curve nodes are
selected yet. Additional nodes can be selected as

• the node closest to the center of the interface curve,

• every n-th node,

• randomly selected node.

4.2 Algorithm for 3D problems

The algorithm for selection of fixing nodes in 3D is based on the nodal multiplicity. The nodal
multiplicity of the node is the number of subdomains which share the node. Maximum nodal
multiplicity is established before selection of fixing nodes. Afterwards nodes with maximum nodal
multiplicity on each subdomain are selected. If there is the minimum number of fixing nodes
on each subdomain, the minimum number of nodes in 3D is three, then the selection process
finishes. Selection process continues in all other cases until there is the minimum number of
fixing nodes. This process starts from maximum nodal multiplicity minus one and continuous
to nodal multiplicity which is equal to three until there is the number of fixing nodes on each
subdomain greater than three.

If fixing nodes are not chosen by steps with nodal multiplicity then the choice of fixing nodes
is based on their geometrical properties. One interface node is selected as the fixing node on
the first subdomain. Two different nodes with maximum distance from the first fixing node are
selected. These nodes are denoted as the fixing nodes on all neighbor subdomains. A subdomain
with at least one fixing node from the previous step is taken into account now. Additional fixing
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nodes are selected in such a way that their distance from the existing fixing nodes is maximized.
This approach is used recursively and at the end of it, there are at least three fixing nodes on each
subdomain. Furthermore, the fixing nodes on each subdomain are spread over the subdomain
and such positions lead to relatively small condition number of subdomain matrices.

5 Numerical examples in 2D

An irregular domain (called Storey) was chosen in order to check whether the algorithm selects
enough fixing nodes which satisfy geometrical conditions. The plane stress linear elasticity pro-
blem is assumed. The shape of the domain is depicted in Figure 1. Several densities of finite
element mesh were used.

The test results are shown in Figures 3 and 4. The number of iterations of the conjugate gradient
method solving the coarse problem with respect to the number of the fixing nodes are plotted
in Figure 3. All graphs show that the increasing number of fixing nodes decreases the number of
iterations of the conjugate gradient method. The time of solution of the coarse problem therefore
also decreases. The total time is decreasing at the beginning but later, it starts to grow due to
factorization of the submatrix which contains unknowns defined on fixing nodes. The total time
is depicted in Figure 4.

Figure 1: Storey: Original domain. Figure 2: Storey: Mesh decomposed into
8 subdomains.

6 Conclusion

The algorithm for selection of the fixing nodes, which are used in the FETI-DP method, was
developed and tested for two dimensional problems. The algorithm was implemented into open
source code SIFEL providing parallel computations. The selection algorithm was tested on se-
veral regular and irregular domains decomposed into regular and irregular subdomains. It was
observed that the minimum as well as maximum number of fixing unknowns is not optimal with
respect to elapsed time. The higher number of fixing nodes decreases the number of iterations
and reduces time of the factorization of the subdomain matrices. Numerical experiments show
that some additional nodes in 2D, e.g. in the center of each interface curve, lead to optimal
elapsed times.
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Figure 3: Storey: The number of iterations in the coarse problem.
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Figure 4: Storey: Time of whole solution.

The algorithm for selection of fixing nodes in 3D is still under development. Recent tests show
that there is the same behavior in the case of the number of iterations as in the 2D.
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Canard traveling waves of the spruce budworm

population model

L. Buřič, A. Kĺıč
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1 Introduction

We study a mathematical model of the spruce budworm (choristoneura fumiferana) population
distribution in the nonconstant environment. See e.g. [1, 2] for introduction to the modeling
of the spruce budworm population dynamics. The problem is formulated as the system of two
nonlinear parabolic partial differential equations (PDE’s) on two-dimensional infinite domain,

ε
∂b

∂t
= ε2

(
∂2b

∂x2
+
∂2b

∂y2

)
+ f(b, s, α, γ) , (1a)

∂s

∂t
= g(b, s, δ) , (1b)

where the functions f and g describing the population dynamics are defined as follows,

f(b, s, α, γ) = b

(
1− b

αs

)
− 1

γ

b2

s2 + b2
, g(b, s, δ) = s (1− s)− 1

δ
b .

The system (1) is in dimensionless form which was proposed in [3, Section 5.2]. The functions
b(x, y, t) and s(x, y, t) define the spruce budworm population density and the foliage population
density in the position (x, y) at the time t, respectively. The problem (1) has four positive
parameters α, γ, δ and ε. It is important that 0 < ε≪ 1.

We are interested in the traveling wave solutions of the system (1). The traveling wave solutions
are located as special solutions of a system of ordinary differential equations (ODE’s) obtained
by the moving coordinate transformation, see e.g. [4, Section 1.5 and Chapter 3].

Let us set b(x, y, t) = u(ξ), s(x, y, t) = v(ξ). The moving coordinate ξ is defined by the relation
ξ = ⟨n,x⟩ − ct, where x = (x, y), c > 0 is the unknown wave velocity, and n is the unit vector
specifying the direction of the traveling wave propagation. Using new coordinates, we can rewrite
the system (1) as the system of the second order ODE’s

ε2
d2u

dξ2
+ εc

du

dξ
+ f(u, v, α, γ) = 0 , (2a)

c
dv

dξ
+ g(u, v, δ) = 0 . (2b)

2 Slow–fast system formulation

In this section we formulate and analyze the system (2) as a slow–fast system of ODE’s. The
slow–fast systems of ODE’s are also called the singularly perturbed systems. See e.g. [5] for
introduction to the geometric theory of the singularly perturbed systems.
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Let us set p1 = u, p2 = εdudξ , q = v. The system (2) is then equivalent to the system of the first
order ODE’s

ε
dp1
dξ

= p2 , (3a)

ε
dp2
dξ

= −cp2 − f(p1, q, α, γ) , (3b)

dq

dξ
= −1

c
g(p1, q, δ) . (3c)

The system (3) is a three-dimensional slow–fast system (in the slow “time” scale) with two fast
variables p1, p2 and one slow variable q. The term “time” is not meant literally because ξ is in
fact the spatial coordinate. After rescaling the independent variable ϑ = ξ/ε one can obtain the
corresponding system in the fast “time” scale,

dp1
dϑ

= p2 , (4a)

dp2
dϑ

= −cp2 − f(p1, q, α, γ) , (4b)

dq

dϑ
= −ε

c
g(p1, q, δ) . (4c)

The so called reduced problem is obtained by taking the system (3) in the limit ε→ 0,

0 = p2 , (5a)

0 = −cp2 − f(p1, q, α, γ) , (5b)

dq

dξ
= −1

c
g(p1, q, δ) . (5c)

The reduced problem is actually a dynamical system on the set

S0(α, γ) =
{
(p1, p2, q) ∈ R3 | p2 = 0 , f(p1, q, α, γ) = 0

}
called the critical manifold of the system (3). Assume additionally that p1, q > 0. Since

∂f

∂q
(p1, q, α, γ) =

p21
αq2

+
2qp21

γ(q2 + p21)
2
> 0 ,

then by the Implicit Function Theorem, the critical manifold S0(α, γ) is a smooth curve lying
in the plane p2 = 0.

The critical manifold S0(α, γ) is also the set of the equilibria of the layer problem

dp1
dϑ

= p2 , (6a)

dp2
dϑ

= −cp2 − f(p1, q, α, γ) , (6b)

dq

dϑ
= 0 , (6c)

obtained by taking the system (4) in the limit ε→ 0. Let Jε denote the Jacobian matrix of the
right-hand sides of the system (4). Furthermore, let us denote λi(ε), i = 1, 2, 3, the eigenvalues
of the matrix Jε. We compute the eigenvalues of the matrix J0,
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λ1(0) = 0 , λ2,3(0) =
−c±

√
c2 − 4 ∂f

∂p1

2
,

where J0 is the Jacobian matrix of the right-hand sides in (6).

The critical manifold S0(α, γ) is divided into the normally hyperbolic segments, see e.g. [5], by
points at which ∂f

∂p1
(p1, q, α, γ) = 0. The normally hyperbolic segment of S0(α, γ) is stable if

Reλ2,3(0) < 0 i.e., if ∂f
∂p1

(p1, q, α, γ) > 0, and it is unstable if ∂f
∂p1

(p1, q, α, γ) < 0. Therefore, we
define the stable part of the critical manifold

S0,s(α, γ) =

{
(p1, p2, q) ∈ S0(α, γ) |

∂f

∂p1
(p1, q, α, γ) > 0

}
,

and the unstable part of the critical manifold

S0,u(α, γ) =

{
(p1, p2, q) ∈ S0(α, γ) |

∂f

∂p1
(p1, q, α, γ) < 0

}
,

respectively. It follows from the continuous dependence of the eigenvalues of the matrix Jε on ε
that the sign of Reλ2,3(ε) is preserved on normally hyperbolic segments of the critical manifold
for sufficiently small ε > 0. The sign of the eigenvalue λ1(ε) for sufficiently small ε > 0 can be
determined by the following proposition.

Proposition 1 Let ∂f
∂p1

̸= 0. Then, the eigenvalue λ1(ε) has the following asymptotic expansion,

λ1(ε) = −
(
c
∂f

∂p1

)−1

det

[ ∂f
∂p1

∂f
∂q

∂g
∂p1

∂g
∂q

]
ε+O(ε2) .

See [3, Section 5.2.2] for the proof.

3 Canard traveling pulse

In this section, we present results obtained by the numerical bifurcation analysis of the system (3)
for γ = 0.64, δ = 10, ε = 0.01. We consider the wave velocity c ≫ ε. Namely, we set c = 1. We
declare that all numerical computations were performed with AUTO-07p software, see [6].

A Hopf bifurcation was detected in the course of the numerical continuation of the equilibria
of the system (3) in dependence on the parameter α. The detected bifurcation value is αHB =
9.27003. At Hopf bifurcation point a branch of the periodic trajectories emerges. We observed
that the periodic trajectory appeared via the Hopf bifurcation undergoes the so called canard
explosion, see e.g. [7]. The canard periodic trajectories are characterized by that they follow
both the stable and the unstable part of the critical manifold.

The canard explosion in the system (3) occurs in the parametric region where three equilibria
exist. One of them is a saddle point lying on the stable part of the critical manifold S0,s(α, γ).
Due to Proposition 1, this saddle has one-dimensional unstable invariant manifold and two-
dimensional stable invariant manifold. We observed that the branch of the canard periodic
trajectories tends to a canard homoclinic trajectory depicted in Figure 1 (on the left) for α =
9.23169. Numerically, the period T → 1.43547 · 1010 and the L2-norm of the periodic solution
tends to the L2-norm of the saddle point lying on the stable part of the critical manifold. The
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Figure 1: On the left: Canard homoclinic trajectory of the system (3); thick solid line – homoclinic
trajectory, thin solid line – stable part of the critical manifold, dashed line – unstable part of
the critical manifold, full square – saddle equilibrium, empty square – fold point of the critical
manifold. On the right: Canard traveling pulse of the system (1); c = 1, α = 9.23169, γ = 0.64,
δ = 10, ε = 0.01

traveling pulse of the system (1) corresponding to the homoclinic trajectory of the system (3)
is plotted in Figure 1 (on the right). The traveling pulse belongs to a new class of the traveling
waves, the so called canard traveling waves. This term was introduced in [8]. Note that the
traveling pulse mediates the decrease of the spruce budworm population.
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Solving an elasto-plastic problem by Newton-like methods

P. Byczanski, S. Sysala

Institute of Geonics AS CR, v.v.i.

1 Introduction

In this contribution, we will apply the semismooth Newton methods with and without damping
to solving a one-time step problem in elesto-plasticity. First, we briefly describe the elasto-plastic
model and formulate the corresponding one-time step problem in the form of the non-linear
variational equation. Then we characterize the used numerical methods. Finally, we illustrate
the methods on a 2D numerical example.

2 Elasto-plasticity with hardening

Elasto-plastic problems are the so-called quasi-static problem where the history of loading is
taken into account. We consider the von Mises plasticity with linear isotropic strain hardening
and with the associative plastic flow rule, see [1, 4]. We use the implicit return mapping scheme
to the time discretization and the finite element method with linear simplex elements, see [1, 7].

Let us denote the space of continuous and piecewise linear functions by Vh which approximates
the space of all admissible displacements. Let 0 = t0 < t1 < . . . < tk < . . . < tN = T be
a partition of the time interval [0, T ]. Then the problem after time and space discretization has
the form for k = 0, 1, . . .:

Given the stress σkh, the hardening parameter κkh and the displacement ukh at tk, compute their
increments △σkh, △κkh, △ukh:∫

Ω

⟨
Dε(△ukh)− akh(ε(△ukh)), ε(vh)

⟩
dx = △fkh (vh) ∀vh ∈ Vh, (1)

△σkh = Dε(△ukh)− akh(ε(△ukh)),
△κkh = (2µ

√
3/2)−1∥akh(ε(△ukh))∥.

Put σk+1
h = σkh +△σkh, κ

k+1
h = κkh +△κkh, u

k+1
h = ukh +△ukh.

Here, the matrix D denotes the Hook’s matrix, µ, λ are Lamé coefficients, △fkh represents the
load increment. The function akh is given in the form

akh(ε) :=
3µ

3µ+Hm

(
∥dev(σ)∥ −

√
2

3
(Y +Hmκ)

)+
dev(σkh +Dε)

∥dev(σkh +Dε)∥
.

The function akh is semismooth and has a potential, see [7]. Let us denote its generalized Jacobian

and potential by ao,kh and bkh, respectively.

Notice that the main problem in each time step is to solve the non-linear equation (1). If we
represent a function vh ∈ Vh by the vector v ∈ Rn and miss the index k then (1) can be rewritten
as the system of non-linear equations

F (△u) = △f ,
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where

⟨F (v),w⟩ :=

∫
Ω
⟨Dε(vh)− ah(ε(vh)), ε(wh)⟩ dx ∀v,w ∈ Rn,

⟨△f ,w⟩ := △fh(wh) ∀w ∈ Rn.

We also introduce the following notation

⟨A(u)v,w⟩ :=

∫
Ω
⟨Dε(vh)− ao(ε(uh))ε(vh), ε(wh)⟩ dx ∀u,v,w ∈ Rn,

⟨Aev,w⟩ :=

∫
Ω
⟨Dε(vh), ε(wh)⟩ dx ∀v,w ∈ Rn,

J(v) :=
1

2
∥v∥2E −

∫
Ω
b(ε(vh))dx− ⟨△f ,v⟩ ∀v ∈ Rn,

where ∥.∥E = ⟨Ae., .⟩1/2. The properties of the function ah ensure that the problem has a unique
solution and can also be formulated as a minimization problem. Notice that A(v) is a symmetric,
positive definite matrix and

(1− ν0)∥w∥2E ≤ ⟨A(v)w,w⟩ ≤ ∥w∥2E ∀v,w ∈ Rn, ν0 =
3µ

3µ+Hm
. (2)

Moreover,

lim
w→0

∥F (v +w)− F (v)−A(v +w)w∥−E

∥w∥E
= 0 ∀v,w ∈ Rn. (3)

3 Semismooth Newton method and its modification

The iterates of the semismooth Newton method (SNM), see [3], have the form

△uj+1 = △uj + sj, A(△uj)sj = △f − F (△uj), j = 0, 1, . . .

The above properties (2) and (3) ensures that SNM converges locally superlinearly. Notice that
the superlinear convergence depends on the finite element discretization. The global convergence
of SNM can be proved for sufficiently large Hm.

In contrast to SNM, the iterates of the semismooth Newton method with damping (SNMD)
have the form

△uj+1 = △uj + αjs
j, A(△uj)sj = △f − F (△uj), αj = arg min

α∈(0,1]
J(△uj + αsj), j = 0, 1, . . .

This method is also locally superlinearly convergent since αj → 1. Moreover the method conver-
ges globally. The corresponding global convergence estimate is independent of the finite element
discretization.

We choose △u0 = A−1
e △ f as a suitable initial approximation of △u. We can also consider

the influences of the inexact inner solvers for computing sj and αj . In the below example, the
vectors sj are founded by a direct solver and the coefficients αj by the regula-falsi method with
respect to the stopping criterion

−δ(∥s̃j∥E) ≤
⟨∇J(uj + α̃j s̃

j), s̃j⟩
(1− ν0)α̃j∥s̃j∥2E

≤ 1

2
q, q < 1, (4)
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where δ(∥sj∥E) = ∥sj∥E/(∥uj+sj∥E+∥uj∥E). The first inequality in (4) ensures that the damping
is not too strong and the second one ensures the global convergence of the method. Notice that
the accuracy of the stopping criterion also depends on the constant 1 − ν0. If the constant is
small, i.e. if we tend to perfect plasticity, then more exact computing of αj is required. The SNM
and SNMD algorithm are stopped if δ(∥sj∥E) < ϵ.

4 Numerical example in 2D

We consider a plain strain problem with a thin plate which is represented by the domain Ω, see
Figure 1. Homogeneous Dirichlet boundary conditions in the normal direction are prescribed on
two sides of Ω. The surface load g(t) = 450 sin(2πt), t ∈ [0, 1/4], is applied to the upper side
of Ω. The material parameters are set to E = 206900, ν = 0.29, Y = 450, Hm = 1, 100, 10000
and the time interval is divided into 50 equidistant steps. We consider three different meshes
with 2028, 7600 and 29400 elements. The worsest of which is depicted in Figure 1. The tolerance
is ϵ = 10−10 .

�ccccc
ccccc
ccccc
ccc

cccccccccccccccccc

6666666666666

g(t)

Ω

1 9

10

Figure 1: Geometry of the example (left), and the worsest applied mesh (right).

The calculation was performed using a MATLAB 7.0 code, see [2]. Both methods are convergent
for this example with respect to the chosen initial iteration. The numbers of SNM and SNMD
iterations are practically the same and the superlinear convergence slightly depends on mesh as
we can see in Table 1 for SNMD, chosen time steps, three different meshes and Hm = 100.

NoTS 25 37 46

NoFE 2028 7600 29400 2028 7600 29400 2028 7600 29400

j
0 1.0e-01 1.1e-01 1.1e-01 3.7e-01 4.1e-01 4.3e-01 7.5e-01 7.9e-01 8.0e-01
1 1.6e-02 2.7e-02 2.9e-02 2.7e-02 2.9e-02 4.0e-02 3.1e-02 3.2e-02 3.3e-02
2 1.8e-03 4.3e-04 5.9e-04 1.5e-03 2.1e-03 4.7e-03 1.0e-04 4.4e-03 2.5e-03
3 4.0e-06 3.2e-07 4.0e-05 2.7e-07 4.0e-04 8.7e-04 7.0e-10 3.2e-04 5.2e-04
4 3.2e-11 7.3e-13 8.4e-09 2.0e-14 4.8e-08 1.4e-04 3.8e-15 1.1e-08 2.5e-04
5 3.2e-15 5.7e-15 4.7e-05 4.0e-15 1.5e-07
6 7.0e-09 4.2e-14
7 6.1e-15

Table 1: Convergence of MSNM (the values of δ(∥sj∥E)) at chosen time steps (NoTS) for 3 meshes
characterized by different numbers of elements (NoFE).
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For the finest mesh, we test the numbers of regula-falsi iterations in dependence on Hm. We need
maximally 0, 1, 2 regula-falsi iteration for Hm = 10000, 100, 1, respectively. Thus the additional
computing of αj is not too costly in this example and SNMD gives the same results as SNM for
Hm = 10000 since αj = 1.

5 Conclusion

The semismooth Newton methods with and without damping have been used to solve the elasto-
plastic problem. The main advantage of SNMD is a global convergence which does not hold for
SNM in general. On the other hand, computing of the damping coefficients could not be very
costly. The proposed stopping criterion (4) ensures all the theoretical convergence results of
SNMD and yields good numerical results in combination with the regula-falsi method.

SNMD can also be used for some semicoercive problems where the first inequality in (2) holds
only for ν0 = 1. It can happened for example for perfect plasticity or some simplified elasto-
damage-plastic models, see [4]. SNMD has also been used to solving a semicoercive problem with
a beam on a non-linear subsoil, see [6]. In such cases, we must replace 1 − ν0 in the stopping
criterion (4) by a suitable tolerance parameter.
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M. Čert́ıková, P. Burda, J. Novotný, J. Š́ıstek

Department of Mathematics, Faculty of Mechanical Engineering and
Department of Mathematics, Faculty of Civil Engineering

Czech Technical University in Prague
Institute of Mathematics and Institute of Thermomechanics

Academy of Sciences of the Czech Republic, Prague

1 Introduction

Numerical solution of linear problems arising from isotropic elasticity discretized by finite ele-
ments is important in many areas of engineering. The matrix of such systems is typically large,
sparse, and ill-conditioned. For large problems, iterative methods such as the preconditioned
conjugate gradients (PCG) are usually less expensive than direct solvers in terms of memory
and computational time. However, their convergence rate deteriorates with growing condition
number of the solved linear system and good preconditioning becomes essential. The need of
efficient preconditioners tailored to the solved problem that can be implemented in parallel gave
rise to the field of domain decomposition methods [1].

The Balancing Domain Decomposition by Constraints (BDDC) method [2, 3] is an iterative
substructuring primal domain decomposition method. The BDDC method is closesly related to
the earlier FETI-DP method. It has been recently proved by Mandel, Dohrmann, and Tezaur
[3], that the two methods are spectrally equivalent, which allows for application of numerical
results computed for one method to the other.

In both methods, a fundamental role is played by a coarse space defined by a choice of constraints
on continuity. Optimal choice of these constraints has strong influence on convergence of the
method. However, this choice in practice is not a satisfactorily solved problem yet. In this paper,
we study the influence of adding more corners (coarse node constraints), on time effectivity of
the computation. Our tests include both scholastic and industrial 3D linear elasticity problems.

2 The BDDC method

After discretization by the finite element method (FEM), the linear system Ku = f is to be
solved for a vector u of unknown values of displacements at nodes of a given domain.

The domain is split into nonoverlapping subdomains with the interface formed by unknowns
common to at least two subdomains. Then the problem is reduced to the Schur complement
problem with respect to the interface and this reduced problem is solved by PCG method. The
BDDC method is used as a preconditioner, that splits the computation of the preconditioned
residual needed in every iteration of PCG to solution of independent subdomain problems and
the global coarse problem. The preconditioned residual is obtained as a combination of their
solutions (for details see [1, 2, 3]).

The coarse problem is solved on the coarse space, which consists of functions that are continuous
across the interface at selected degrees of freedom only. Functions from the coarse space are fully
determined by their values at these coarse degrees of freedom and by the requirement of having
minimal energy elsewhere.
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Choice of the coarse degrees of freedom has great impact on the performance of the preconditio-
ner. The simplest choice of coarse degrees of freedom is a function value at a selected node on the
interface. Such node is then called corner. It was shown that while for 2D elasticity problems
the BDDC (or FETI-DP) preconditioner is scalable for coarse space defined by corners only,
in 3D elasticity problems more general coarse degrees of freedom, such as (weighted) average
values over edges and faces, need to be used in order to achieve the scalability, see e.g. Toselli
and Widlund [1]. In what follows we deal with 3D problems only.

3 The implementation

In every PCG iteration, the following types of problems are to be solved:

• On every subdomain, a local problem with zero Dirichlet boundary condition on the inter-
face.

• On every subdomain, a local problem with zero Dirichlet boundary condition on the coarse
degrees of freedom on interface and zero Neumann boundary condition on the rest of the
interface.

• Global coarse problem for coarse degrees of freedom only.

Only values of the boundary conditions, not their type, change from iteration to iteration, so all
the factorizations can be prepared in advance. During the PCG cycle only back-substitutions
are performed.

We implemented BDDC on top of common components of existing finite element codes – the
frontal solver and the element stiffness matrix generation. The coarse problem is solved using
standard FEM approach with subdomains playing the role of elements. Thus the coarse matrix
in not assembled as a whole but stored distributed among processors as local coarse matrices.
Lagrange multipliers are used for implementation of the coarse averages. Detailed description of
the implementation can be found in [5], in less detail it is described also in [4].

4 Numerical results

Presented calculations were performed on 12-36 processors of SGI Altix 4700 computer of Super-
computing Centre of Czech Technical University in Prague. The METIS graph partitioner is used
as an automatic tool for other than rectangular decompositions.

First we investigated a typical test problem for 3D elasticity: a cuboid with fixed base loaded by
pressure of a weight put on the upper face. The geometry is discretized using 24 000 quadratic
elements, which leads to 311 943 unknowns. We tested two typical decompositions of the domain:
36 cuboid subdomains obtained by plane sections or 36 subdomains obtained by the graph tool,
reffered to as Case A or Case C, respectively. Then we tested three different industrial problems
of different sizes. The first one is a problem of elasticity analysis of a turbine nozzle, through
which the steam enters the turbine blades. The geometry is discretized using 2 696 quadratic
elements, which leads to 40 254 unknowns. The second one is a problem of elasticity analysis
of a hip joint replacement which is loaded by pressure from body weight. This mesh consists
of 33 186 quadratic elements resulting in 544 734 unknowns. Both meshes were divided into
36 subdomains by the graph tool. The third problem is a problem of stress analysis of a mine
reel loaded by its own weight and the weight of of the steel rope. The mesh consisting of
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problem subdomains vertices edges faces interf. nodes all nodes

Case A 36 12 52 75 17 303 103 981

Case C 36 82 181 144 20 321 103 981

Turbine nozzle 36 6 60 101 2 714 13 418

Hip replacement 36 1 19 78 9 222 181 578

Mine reel 1 024 2 451 1 209 4 164 117 113 579 737

Table 1: Decomposition characteristics of the tested problems.

140 816 quadratic elements and 1 739 211 unknowns was divided into 1 024 subdomains by the
graph tool. Decomposition characteristics of the problems are summarized in Table 1.

We experimented with adding corners to an initial set of corners selected by the algorithm
published in [6], with or without using also averages over faces and edges.

When only corners were used for the coarse problem, adding more corners to the initial set did
not improved efficiency for small problem of the turbine nozzle, but proved to be beneficial for
medium-size problems. Figure 1 left shows results for the turbine nozzle, right for the hip joint
replacement problem (very similar results as for hip replacement were obtained also for both
cuboid problems). There are three time series depicted on every graph: the overall computational
time, the time consumed by factorization of all subproblems, and the time consumed by PCG
iterations. For the large problem of mine reel, corners only were not sufficient for convergence.

When also averages were used, adding more corners to the initial set did not improved efficiency
for small and medium problems, but proved to be beneficial for the large problem of mine reel.
Figure 1 left shows results for the cuboid problem A (very similar results were obtained also for
the cuboid problem C), center the hip joint replacement problem, right the mine reel problem.

5 Conclusion

We investigated time efficiency for different choices of the coarse space in the BDDC method.
Our tests indicate that the approach of adding more corners to the ”minimal“ set of corners
can be beneficial for medium problems (either scholar or industrial problems), when the coarse
space is defined by corners only. If also averages on edges and faces are used as coarse degrees of
freedom, the improvement is small or none. For small industrial problem of the turbine nozzle we
found no benefit in adding more corners. On the contrary for the large problem of the mine reel,
adding more corners proved to be beneficial for convergence, when averages on edges and faces
are used as coarse degrees of freedom (without averages convergence was not achieved). However,
for really large problems it seems that some more sofisticated techniques for costruction of the
coarse space should be used.

Acknowledgement: We are grateful to Jan Leština (Vamet Ltd.) for providing the problems of
turbine nozzle and mine reel for testing. We would also like to thank to Jan Mandel and Bedřich
Soused́ık for fruitful discussions about BDDC method. This research has been supported by the
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demy of Sciences of the CR under grant IAA200600801, and by projects MSM 6840770001 and
MSM 6840770010. It has also been supported by Institutional Research Plans AV0Z 10190503
and AV0Z 20760514.
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Figure 1: Computational time when using corners only: turbine nozzle problem (left) and hip
joint replacement problem (right).

Figure 2: Computational time for coarse space with averages: cuboid problem A (left), hip joint
replacement problem (center) and mine reel problem (right).
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on the frontal and multifrontal algorithm. In: Blaheta, R. and Starý, J. (ed.), Proceedings of
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1 Introduction

Contact problems represent a special branch of mechanics of solids whose goal is to find an equi-
librium state of deformable bodies being in a mutual contact. Due to non-penetration and friction
conditions, problems we have to solve are highly non-linear. For linearly elastic materials obey-
ing a Hook law for small deformations, a linearization of the non-penetration conditions leads
to a convex set of kinematically admissible displacements (geometrical nonlinearity). Another
non-linearity originates from the presence of friction. In the simplest case with an à-priori given
slip bound (Tresca model), the mathematical model is represented by a variational inequality
of the second kind. This model is however too simple since the non-penetration and friction
phenomena are decoupled. For this reason more realistic models of friction have to be used and
the Coulomb friction law is the classical one. The slip bound prescribed in Tresca model is
now replaced by the product of a coefficient of friction F and the norm of the normal contact
force. The coupling of unilateral and friction conditions leads to the so-called implicit variational
inequality (in terms of displacements) or to a quasivariational inequality (in terms of contact
stresses). Due to material or contact surface properties it may happen that the effect of friction
is directionally dependent. A discretization of 3D contact problems with orthotropic Coulomb
friction characterized by two coefficients of friction F1 and F2 in two mutually orthogonal di-
rections was presented in [4]. The scalable algorithm for this problem was developed in [3] while
the main ideas may be found in [1].

2 Formulation and algorithm

Let us consider two elastic bodies represented by two non-overlapping domains Ωk ⊂ R3 with
the boundaries ∂Ωk, k = 1, 2. Each boundary consists of three non-empty disjoint parts Γk

u, Γ
k
p,

and Γk
c open in ∂Ωk, so that ∂Ωk = Γ

k
u ∪ Γ

k
p ∪ Γ

k
c . The zero displacements are prescribed on Γk

u

while surface tractions act on Γk
p. On the contact interface given by Γ1

c and Γ2
c we consider

contact conditions: the non-penetration of the bodies, the transmission of the contact stresses,
and the effect of orthotropic Coulomb friction. Finally we suppose that each body Ωk is subject
to volume forces.

Our algorithm is based on the fixed-point approach in which the solution to the original problem
is defined as a fixed-point of an auxiliary mapping acting on the contact interface. To find fixed-
point we use the method of successive approximations whose individual iterative steps are given
by contact problems with orthotropic Tresca model of friction.

The finite element approximation of the auxiliary problems combined with the TFETI domain
decomposition method [2] leads to the following algebraic minimization problem:
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minimize
1

2
u⊤Ku− u⊤f +

mc∑
i=1

gi∥Fi(T1,iu, T2,iu)
⊤∥2, (1)

subject to BEu = 0, Nu ≤ d, (2)

where K = diag(K1, . . . ,Ks) is a symmetric positive semidefinite block-diagonal stiffness matrix
of order n, f ∈ Rn is the load vector, BE is an m × n full rank ”gluing”matrix, N denotes an
mc×n full rank matrix describing together with d ∈ Rmc the non-penetration condition, T1,i, T2,i
are rows ofmc×n full rank matrices T1, T2, respectively, Fi ∈ R2×2 are the value of the coefficient
of friction, and gi denote discrete slip bound values at contact nodes.

Even though (1)-(2) is the minimization problem with the unique solution, it is not suitable
for direct numerical solution. The reasons are that K is typically singular, the summation term
in (1) is non-differentiable, and the feasible set in (2) is in general so complex that the projection
into it can hardly be effectively computed. In order to overcome these difficulties, one can apply
the duality theory of convex programming [1].

To regularize the non-differentiability we use the following idea based on the Cauchy-Schwarz
inequality in R2:

max
∥F−1

i λT,i∥2≤gi

(T1,iu, T2,iu)λT,i = gi∥Fi(T1,iu, T2,iu)
⊤∥2, (3)

where λT,i ∈ R2 plays the role of Lagrange multipliers. We will denote λT,i = (λT1,i, λT2,i)
⊤. It

is easily seen that the constraints on λT,i in (3) are the ellipsoidal inequalities.

In the dual formulation of (1)-(2) we use three types of Lagrange multipliers: λE ∈ Rm

and λN ∈ Rmc are associated with the equality and the inequality constraints in (2), while
λT1 , λT2 ∈ Rmc regularize the non-differentiability via (3). To simplify the notation we denote

λ =


λE
λN
λT1

λT2

 , B =


BE

N
T1
T2

 , c =


0
d
0
0

 .

The Lagrangian associated with the problem (1)-(2) reads as

L(u, λ) =
1

2
u⊤Ku− u⊤f + λ⊤(Bu− c), (u, λ) ∈ Rn × Λ(g),

and the set of the Lagrange multipliers is given by

Λ(g) = {λ ∈ Rm+3mc : λN,i ≥ 0, ∥F−1
i λT,i∥22 ≤ g2i , i = 1, . . . ,mc}.

It is well known [1] that (1)-(2) is equivalent to the saddle-point problem that is the problem of
finding (ū, λ̄) ∈ Rn × Λ(g) such that

L(ū, λ̄) = min
u∈Rn

max
λ∈Λ(g)

L(u, λ).

As L is convex in the first variable, ū can be eliminated by

ū = K†(f −Bλ̄) +Rᾱ,
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where K† ∈ Rn×n is a generalized inverse to K, R ∈ Rn×l is a matrix whose columns span the
null-space KerK, l denotes the defect of K, and ᾱ ∈ Rl is an appropriate vector. In advance,

f −B⊤λ̄ ∈ ImK.

Therefore, (1)-(2) leads to the dual problem:

minimize
1

2
λ⊤Fλ− λ⊤h̃, subject to λ ∈ Λ(g), Gλ = e,

where
F = BK†B⊤, h̃ = BK†f − c, G = R⊤B, e = R⊤f.

After homogenization, using orthogonal projectors, and penalization, we arrive at the following
problem:

minimize
1

2
λ⊤(PFP + ρQ)λ− λ⊤Ph, subject to λ ∈ Λ(g), Gλ = 0, (4)

where ρ > 0 is arbitrary and Q = G⊤(GG⊤)−1G, P = I − Q denote the orthogonal projectors
on ImG⊤ and KerG, respectively.

As (4) consists of the minimization of the quadratic objective function subject to separable
convex inequalities and linear equality constraints, we use the recently proposed optimization
algorithm based on the augmented Lagrangian method [3]. The important property of this
algorithm is that the number of iterations needed to get a solution with a given accuracy is
uniformly bounded (with respect to the scale of the problem) provided that the spectrum of
the Hessian is confined in a given interval. The assumption on the spectrum is satisfied due to
TFETI domain decomposition method.

3 Numerical experiments

We use the algorithm for solving contact problem with Coulomb friction with the geometry as
in Figure 1. The upper body is made of steel while the lower one is made of aluminium. The
applied surface tractions are seen in the figure, the volume forces are neglected. The coefficient
of friction is given by Fi = diag(0.3, 0.3) (isotropic case).

Ω
1

Ω
2

Γ
1
u

Γ
2

u

Γ
1

c
= Γ

2

c

Figure 1: Geometry of the model problem
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Each body Ωk, k = 1, 2, is divided into the same number of sub-domains represented by bricks
of the same size that are decomposed then into cubes (trilinear finite elements). By H and h
we denote the decomposition parameter (diameter of bricks) and the discretization parameter
(diameter of cubes), respectively. We apply the inexact implementation of the algorithm so
that iter are connected iterates of the augmented Lagrangian algorithm and the method of
successive approximations. By nPFP we denote the number of matrix vector multiplications by
the Hessian matrix. Finally, n, nd = m + 3mc, and l is the number of primal unknowns, dual
unknowns, and rigid body modes. The results of our experiments are summarized in Table 1,
where releff := nPFP/n is the relative efficiency of the solver.

s H/h = 2 H/h = 3 H/h = 4 H/h = 5

4 (324/153/24) (768/276/24) (1500/435/24) (2592/630/24)

10/180 10/269 11/356 11/470
0.5556 0.3503 0.2373 0.1813

32 (2592/1527/192) (6144/2889/192) (12000/4683/192) (20736/6909/192)

11/483 11/657 11/665 12/847
0.1863 0.1069 0.0554 0.0408

108 (8748/5493/648) (20736/10506/648) (40500/17139/648) (69984/25392/648)

11/636 11/878 13/906 14/1071
0.0727 0.0423 0.0224 0.0153

256 (20736/13419/1536) (49152/25791/1536) (96000/42195/1536) (165888/62631/1536)

12/737 14/939 15/1173 16/1400
0.0355 0.01910 0.0122 0.0084

500 (40500/26673/3000) (96000/51408/3000) (187500/84243/3000)(324000/125047/3000)

14/812 15/1039 17/1533 18/1776
0.0200 0.0108 0.0081 0.0054

a At each position (n/nd/l), iter/nPFP, and releff are displayed

Table 1: Scalability and relative efficiency.
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Preconditioning of FETI-DP using corners on contact interface
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Our research concerns the preconditioning of FETI-based methods for contact problems. The
standard FETI-DP is based on the decomposition into non-overlapping subdomains, where the
continuity of the primal solution at crosspoints is implemented directly into the formulation
of the primal problem so that one degree of freedom is considered at each crosspoint and the
continuity of the solution on auxiliary interfaces is enforced by Lagrange multipliers. The duality
transforms the general inequality into the nonnegativity constraints. After eliminating the cor-
ners, the problem reduces to a small, relatively well conditioned strictly convex QP (Quadratic
Programming) problem with simple bound for Lagrange multipliers that is solved iteratively by
efficient algorithms that exploit cheap projections and other tools. For semi-coercive problems
the efficiency of the FETI-DP can be further improved by introducing special projectors onto an
auxiliary space related to rigid body modes of floating bodies and preconditioners - lumped and
Dirichlet’s. Let us mention that the preconditioners can be applied only to the linear part and
their efficiency is very small. Once the Lagrange multipliers are known, we solve linear problem
to find solution for corners. In both phases we need to build the matrix defining so called coarse
problem and to factorize it. The scalability of FETI-DPC based on active set strategies with
additional planning steps was established by Farhat et al. [6] only experimentally. Dostál et al.
proved this scalability theoretically. Numerical scalability for FETI–DP algorithm for coercive
problems was proven theoretically and experimentally in [1]. Later, the result was extended to
include mortar disctretization [4] and for semicoercive problems [3].

Farhat et al. observed, [5], that the corner nodes on contact interface cause difficulties and
recommended to avoid them. These difficulties can be overcome through the additional condi-
tion that preserves the nonpenetration in Lagrange multipliers, and moreover in this way it is
possible to improve rate of convergence. This richer corner mesh results in better convergence
of the method because of better error propagation across the nonlinear interface and in better
preconditioning of nonlinear steps using standard FETI-DP preconditioners. We showed expe-
rimentally that for unpreconditioned and preconditioned FETI–DP using no corners on contact
zone the numbers of CG iterations increase much more rapidly with increasing number of subdo-
mains along the contact interface in comparison to the case we use corners on the contact zone,
when the numbers of CG iterations vary very moderately. The results demonstrate that for a
given decomposition the use of corners always significantly reduces number of CG iterations for
both unpreconditioned and preconditioned systems and this effect is magnified with increasing
number of subdomains along the contact interface, i.e. with increasing number of corners on the
the contact zone.

Significant modification making from FETI-DP the method of new type is based on definition
of all nodes on the contact zone as the corners, i.e. constraint matrix with inequality conditions
considers only corner nodes. This approach enable us the splitting of the problem into a very
small nonlinear one with corners as unknowns and a linear one with the Lagrange multipliers for
equalities. We eliminate the Lagrange multipliers first and the problem reduces to very small,
well conditioned strictly convex QP problem with bound for corners that is solved iteratively
by efficient algorithms or by application of duality resulting in dual problem with Lagrange
multipliers for inequalities. Once the corners are known we solve linear problem to find the
solution for Lagrange multipliers for equalities. In both phases we do not need to build any
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matrix defining the coarse problem and to factorize it. Moreover we can significantly reduce the
number of CG interations by applying the standard FETI-DP preconditioners in both cases,
i.e., by solving the nonlinear problem with corners and the linear one with Lagrange multipliers
as unknowns.

We shall give the results of numerical experiments with parallel implementation using Matlab
and PETSc that confirm scalability of the algorithm for contact problems.
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1 Introduction

Flame propagation problems are highly nontrivial from both the modeling and computational
points of view. On the computational side, a major difficulty are sharp moving fronts that need to
be resolved accurately at all times in order to capture the process dynamics correctly. Nowadays,
most practitioners are still tackling these problems with non-adaptive methods such as finite
differences (FDM) or non-adaptive low-order finite elements (FEM) [1]. However, extremely fine
uniform meshes are usually needed to attain results with sufficient accuracy, which leads to
excessive computing times and memory requirements. One of the first space-time adaptive FEM
algorithms for flame propagation problems, based on first-order FEM appeared recently [3].

In this paper we present the first algorithm that makes it possible to use adaptive hp-FEM [4, 7]
for evolutionary PDEs. In Section 2 we presents a low Mach number laminar flame propagation
model consisting of two coupled nonlinear parabolic differential equations. Section 3 introduces
a novel space-time adaptive algorithm based on a combination of the classical Rothe’s method
and the novel multi-mesh hp-FEM [5, 6]. Numerical results are presented in Section 4.

2 Model problem

We consider a freely propagating laminar flame and its response to a heat-absorbing obstacle
represented by a set of cooled parallel rods with a rectangular cross-section. The mathematical
model is based on the assumption that the motion of the fluid is independent from the tempera-
ture θ and species concentration Y . Fluid motion in the burner is neglected. The model consists
of a system of two coupled nonlinear parabolic equations for θ and Y ,

∂θ

∂t
−∆θ = ω(θ, Y ) in Ω× (0, T0), (1)

∂Y

∂t
− 1

Le
∆Y = −ω(θ, Y ) in Ω× (0, T0). (2)

Here, the reaction rate ω(θ, Y ) is defined by the Arrhenius law

ω(θ, Y ) =
β2

2Le
Y e

β(θ−1)
1+α(θ−1) , (3)

where α is the gas expansion coefficient in a flow with nonconstant density, β the non-dimensional
activation energy, and Le the Lewis number (ratio of diffusivity of heat and diffusivity of mass).
Both θ, 0 ≤ θ ≤ 1 and Y , 0 ≤ Y ≤ 1 are dimensionless and so is the time t.
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3 Adaptive hp-FEM on dynamical meshes

The adaptive hp-FEM algorithm for time-dependent problems we use is obtained by combining
the classical Rothe’s method with the novel multimesh hp-FEM [5, 6].

The Rothe’s method provides a better setting for the application of spatially adaptive algorithms
compared to the method of lines (MOL). In every time step, an evolutionary PDE is approxi-
mated by means of one or more time-independent ones. The spatial discretization error can be
controlled by solving the time-independent equations adaptively, and the size of the time step
can be adjusted using standard ODE techniques. In our computations adaptive time integration
is carried out using a pair of first-order backward-difference formulas, whose combination yields
a second-order scheme [2]. In every time step, the difference between the pair of results provides
an estimate of the local error that is used to adapt the time step.

In the (n+1)st time step, the approximations θn(x), Y n(x), that have been obtained in the pre-
vious time step, are used as data. Note, however, that they are defined on a locally refined mesh
that was created automatically during the nth time step, while the unknowns θn+1(x), Y n+1(x)
are solved adaptively starting from a coarser mesh. As a result, the meshes obtained on each time
level are different, i.e., the mesh changes dynamically in time. In order to keep the algorithms on
a reasonable level of complexity, the meshes are not completely unrelated. Each of the meshes Tn
is obtained from a very coarse master mesh Tm using sequence of local mutually independent
refinements. In order to evaluate exactly the weak formulation of the coupled problem (1), (2)
when the solution pairs θn(x), Y n(x) and θn+1(x), Y n+1(x) are defined on different meshes, we
use the multi-mesh hp-FEM [5, 6]. In this technology the stiffness matrix is assembled on a vir-
tual union mesh Tu which is the geometrical union of the meshes Tn and Tn+1, as illustrated
in Fig. 1. In this way, no additional error arises since no transfer of information between the
meshes takes place.

Figure 1: Example of a master mesh Tm, meshes Tn, Tn+1 and the union mesh Tu.

The final space-time adaptive algorithm can be summarized as follows:

1. calculate a temporal error estimate ek = ||ω(θ1, Y1)− ω(θ2, Y2)||L2

2. calculate a spatial error estimate eh = ||ω(θ1, Y1)− ω(θ̂, Ŷ )||H1/||ω(θ̂, Ŷ )||H1

3. if both ek < TIMETOL and eh < SPACETOL, perform mesh coarsening and proceed to
the next time level with new time step

4. else

• if ek > TIMETOL adjust time step τk = τk

√
TIMETOL

ek

• if eh > SPACETOL perform mesh adaptation

and repeat process.
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4 Numerical example

We consider the parameters α = 0.8, β = 10, Le = 1 and compare the results of two space-
time adaptive computations; hp-FEM and h-FEM with quadratic elements. In both cases, the
full Newton’s method was used to resolve the nonlinearity. We do not compare the space-time
adaptive hp-FEM computations with computations using a fixed mesh and/or timestep because
we do not see how these methods could be compared fairly.

Fig. 2 shows the reaction rate ω(Y, θ) and the underlying hp-FEM and h-FEM meshes at time
t = 47.4. The numbers inside elements indicate their polynomial degrees. Notice that very small
elements on the flame front are often adjacent to very large elements. This is possible due to the
technique of arbitrary-level hanging nodes [4], and for problems with sharp fronts or curvilinear
material interfaces, this saves large amounts of degrees of freedom which otherwise would be
needed to keep the mesh regular.

Figure 2: Reaction rate, hp-mesh and h-mesh at time t = 47.4.

Fig. 3 compares the cost of the two computations in terms of the discrete problem size. The
reader can see that the adaptive h-FEM with quadratic elements required on average 5-6 times
more degrees of freedom. It is worth mentioning that also the computational time for low-
order FEM computation was more than twice longer. The history of time step size during the
computation, for the hp-FEM case, is shown in Fig. 3.
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Figure 3: Comparison of discrete problem size as a function of time (left) and the size of time
step during the computation (right).

5 Conclusion

We presented a novel PDE-independent space-time adaptive hp-FEM algorithm for evolutionary
problems based on a combination of the Rothe’s method with a novel adaptive multi-mesh
hp-FEM technique. The method was applied to solve a low Mach number flame propagation
model consisting of a pair of coupled nonlinear parabolic PDEs. The method was tested with
favorable results against space-time adaptive FEM with low-order (quadratic) elements. The
algorithms described in this paper are freely available under the GPL license as part of the
modular higher-order finite element C++ library Hermes.
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On the Ritz values that can be generated

by the Arnoldi method
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1 Introduction

The Arnoldi method generates approximate eigenvalues of a complex n× n matrix A by consi-
dering a starting unit vector v ∈ Cn and a decomposition

AVk = VkHk, Vke1 = v,

where V ∗
k Vk = I and Hk is upper Hessenberg with a positive real lower sub-diagonal. The

approximate eigenvalues found in the kth iteration of the Arnoldi method, called Ritz values,
are the eigenvalues of Hk. In case A is Hermitian, the method generates a matrix Hk which is
tridiagonal and the method is called Lanczos method.

In his 1979 paper, Scott showed that the Lanczos method may converge very slowly in pathologic
cases [4]. More precisely, given a Hermitian positive definite matrix A with the eigenvalues

λ1 < λ2 < · · · < λn,

he constructed a perverse starting vector v such that the eigenvalues of Hn−1 are

λ1 + λ2
2

,
λ2 + λ3

2
, . . . ,

λn−1 + λn
2

.

That is, convergence may be postponed until the very last iteration.

This extended abstract deals with generalizations of Scott’s result to the Arnoldi algorithm. In
the case where A is normal but not Hermitian, we can easily exploit a procedure due to Ericsson
to obtain the desired generalization. It turns out that in the next to last iteration one may
generate any distribution of Ritz values as long as it satisfies a generalized interlacing property
with respect to the spectrum of A. This is done in the next section. The last section presents
further generalization for non-normal, diagonalisable matrices and discusses several other issues
related to generating prescribed Ritz values in the Arnoldi method.

2 The normal case

The procedure described on page 10 of [1] leads to a method to compute a normal upper
Hessenberg matrix H ∈ Cn×n with given distinct eigenvalues and given spectrum of its leading
principal submatrix. This spectrum, µ1, . . . , µn−1, must satisfy what is called a generalized inter-
lacing property in [1], namely

Π(r) ≡
∏n−1

j=1 (λr − µj)∏n
j=1,j ̸=r(λr − λj)

> 0, 1 ≤ r ≤ n, (1)

where λ1, . . . , λn are the distinct eigenvalues of H.
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The following theorem shows how the procedure on page 10 of [1] can be used to construct for
a given normal matrix with distinct eigenvalues an initial Arnoldi vector such that the Arnoldi
method applied to the normal matrix with the initial Arnoldi vector yields prescribed Ritz values
in the next to last step.

Theorem. Consider a normal matrix A with spectral decomposition A =Wdiag (λ1, . . . , λn)W
H

where the eigenvalues λ1, . . . , λn are distinct and consider n−1 values µi such that the generalized
interlacing property (1) is satisfied. Let z ∈ Cn be any vector satisfying

|zr|2 = Π(r), 1 ≤ r ≤ n,

and let
ΛZ = ZĤ

be the Arnoldi decomposition generated by the matrix Λ = diag (λ1, . . . , λn) and initial vector
Ze1 = z, i.e. ZHZ = I and Ĥ is upper Hessenberg with a positive real lower subdiagonal. Then
the Arnoldi algorithm applied to A with initial vector

v ≡WZ̄en

generates in the (n− 1)st iteration the Ritz values µ1, . . . , µn−1.

P r o o f : Let H be an upper Hessenberg matrix with eigenvalues (λ1, . . . , λn) and leading
principal submatrix whose spectrum consists of the values µ1, . . . , µn−1. Let HX = XΛ be the
spectral decomposition of H. Paige showed in [2] that

|Xn,r|2 = Π(r), 1 ≤ r ≤ n,

see also [3, 1, 5]. Hence there holds Xn,r = eiϕrzr for values ϕr, 0 ≤ ϕr ≤ 2π, and for 1 ≤ r ≤ n.
If D = diag (ϕ1, . . . , ϕn) this means that we have

XT en = Dz. (2)

Let P = (en, . . . , e1) be the permutation matrix containing the columns of the identity matrix
in reversed order and let H̃ be the upper Hessenberg matrix defined by H̃ ≡ PHTP . Then from
HX = XΛ we have

ΛXTP = XTPH̃.

This is an Arnoldi decomposition generated by the matrix Λ and initial vectorXTPe1 = XT en =
Dz. On the other hand, from ΛZ = ZĤ we obtain

DΛZ = ΛDZ = DZĤ,

i.e. an Arnoldi decomposition generated by the matrix Λ and initial vectorDZe1 = Dz. It follows
from the uniqueness of the Arnoldi decomposition that the two decompositions are identical and
Ĥ = H̃. Then we obtain from ΛZ = ZĤ, subsequently,

ΛZP = ZPPH̃P = ZPHT ,

PZTΛ = HPZT ,

PZTWHWΛWH = HPZTWH ,

AW (PZT )H =W (PZT )HH.

BecauseW (PZT )H is unitary, the last equation represents the Arnoldi decomposition generated
by the matrix A and initial vectorWZ̄Pe1 =WZ̄en. Its Hessenberg matrix has the desired Ritz
values. �
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3 Further generalizations

The previous theorem can be generalized to the case where A is diagonisable but not necessarily
normal. The eigenvalues must be distinct and the Ritz values must satisfy a modification of (1).

Theorem. Let A be diagonalisable with spectral decomposition A = Wdiag (λ1, . . . , λn)W
−1

where the eigenvalues λ1, . . . , λn are distinct and consider n−1 values µi such that the nonlinear
system of equations in the complex variables z1, . . . , zn,

diag(z1, . . . , zn)(W
HW )−1z =

Π(1)

. . .

Π(n)

 (3)

has a solution. Let z ∈ Cn be any vector satisfying (3) and let

ΛZ = ZĤ

be the (WHW )−1-orthogonal Arnoldi decomposition generated by the complex conjugate of the
matrix Λ = diag (λ1, . . . , λn) and initial vector Ze1 = z, i.e. ZH(WHW )−1Z = I and Ĥ is
upper Hessenberg with a positive real lower subdiagonal. Then the Arnoldi algorithm applied to
A with initial vector

v ≡WZ−Hen

generates in the (n− 1)st iteration the Ritz values µ1, . . . , µn−1.

In our talk we plan to address the proof of this theorem and the geometric meaning of the
interlacing properties (1) and (3). We also envisage to discuss generating prescribed Ritz values in
arbitrary iteration numbers smaller than n−1. Finally, we will mention the problem of generating
prescribed Ritz values when A is not given but, as the starting vector v, is constructed. In this
case it is possible to prescribe the Ritz values of more than one iteration number.

Acknowledgements: The authors thank Zdeněk Strakoš for initiating work on this topic. The
work of the first author was supported by project number KJB100300703 of the Grant Agency
of the Academy of Sciences of the Czech Republic.
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Potential and Hamiltonian in the Filippov systems

T. Hanus, D. Janovská
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1 Introduction

We try to apply the qualitative analysis tools of the continuous dynamical systems onto the
discontinuous ones. Functions like a potential, a pseudopotential, a hamiltonian, a pseudohamil-
tonian can describe the global behaviour of the Filippov system.

2 Potential and pseudopotential

Let us have the Filippov system

F :



dx

dt
= −x

dy

dt
= −y + 1

 x ∈ R, y < 0,

dx

dt
= −x

dy

dt
= −y − 1

 x ∈ R, y > 0.

(1)

Its phase portrait is
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The function

U(x, y) =


−1

2
x2 − 1

2
(y − 1)2, x ∈ R, y < 0,

−1

2
x2 − 1

2
(y + 1)2, x ∈ R, y ≥ 0,

(2)

is the potential of the system (1). We can see that the gradient of (2) is equal to the vector field
of (1) in all points, except for those with y = 0:[

∂U

∂x
,
∂U

∂y

]
=

{
[−x,−y + 1] , x ∈ R, y < 0,

[−x,−y − 1] , x ∈ R, y > 0.

The function

Û(x, y) = (−2) · U(x, y) =

{
x2 + (y − 1)2, x ∈ R, y < 0,

x2 + (y + 1)2, x ∈ R, y ≥ 0,
(3)

is the pseudopotential of the system (1). The fall lines of (3) projected into the plane xy are the
trajectories of (1).

3 Hamiltonian and pseudohamiltonian

Now, let us have the Filippov system

F :



dx

dt
= −y + 1

dy

dt
= x

 x ∈ R, y < 0,

dx

dt
= −y − 1

dy

dt
= x

 x ∈ R, y > 0,

(4)

with its phase portrait
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The function

H(x, y) =


−1

2
x2 − 1

2
(y − 1)2, x ∈ R, y < 0,

−1

2
x2 − 1

2
(y + 1)2, x ∈ R, y ≥ 0.

(5)

is the hamiltonian of the system (4). We can notice, that the condition[
∂H

∂y
,−∂H

∂x

]
=

{
[−y + 1, x] , x ∈ R, y < 0,

[−y − 1, x] , x ∈ R, y > 0,

holds for all points, except for those with y = 0. So the gradient of (5) is always orthogonal to
the vector field of (4).

The function

Ĥ(x, y) = (−2) ·H(x, y) =

{
x2 + (y − 1)2, x ∈ R, y < 0,

x2 + (y + 1)2, x ∈ R, y ≥ 0.
(6)

is the pseudohamiltonian of the system (4). The level curves of (6) are the trajectories of (1)
free of orientation.

4 Graph

Here we have 3D graph of (3) and (6). They happened to be the same, which is not the rule, of
course.

It is a function of two variables, continuous, but not smooth. It is not differentiable at the points
with y = 0.
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5 Conclusion

A discontinuous dynamical system is defined piecewise, there is a special formula on each sub-
domain of the state space. Handling such system requires switching formulas on the boundary
between the subdomains. This work is the first step of the long journey. Once we will have
one formula of a dynamical system on the entire state space no matter if it is continuous or
discontinuous.

Acknowledgement: This work has been supported by the grant MSM 6046137306.
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Redukce diskrétńı puklinové śıtě a jej́ı vliv

na řešeńı úlohy prouděńı

J. Havĺıček, M. Hokr, J. Kopal, P. Rálek

Fakulta mechatroniky, informatiky a mezioborových studíı

Technická univerzita v Liberci

1 Úvod

Př́ıspěvek se věnuje popisu vlastnost́ı algoritmu pro redukci dvourozměrné puklinové śıtě a vliv
této redukce na řešeńı úlohy prouděńı v diskrétńı puklinové śıti s mechanickým zat́ıžeńım.
Problém vznikl jako součást projektu Decovalex-2011, Task C [1].

Potřeba redukovat rozsáhlou puklinovou śıt’ tak, aby z̊ustaly přibližně zachovány jej́ı hydraulické
vlastnosti (nebo abychom tuto změnu uměli vysledovat), vznikla při snaze implementovat sdruže-
nou úlohu prouděńı–mechanika. Vliv mechanického zat́ıžeńı na rozevřeńı pukliny je v současné
době poč́ıtán analyticky zvlášt’ pro každou puklinu, nicméně vzniklý reduktor śıtě poskytuje
zaj́ımavé poznatky o vlastnostech puklinové śıtě, kdy velkou roli z hlediska toku oblast́ı hraje
malý počet velkých puklin.

2 Popis úlohy

Modelovanou oblast́ı je čtverec o délce strany 20m, na kterém je stochasticky generovaná dis-
krétńı puklinová śıt’ (s parametry podle reálných měřeńı [2], [3]). Rozevřeńı puklin je úměrné
jejich délce. Pro úlohu prouděńı je zadána Dirichletova okrajová podmı́nka pro tlakovou výšku
a gradient tlaku (dvě r̊uzné okrajové podmı́nky jsou znázorněny na obr. 1 vlevo a vpravo).
Podrobnému popisu numerického řešeńı úlohy prouděńı (bez zahrnut́ı mechanického zat́ıžeńı)
za použit́ı programu Flow123D se věnuje [5].

Obrázek 1: Okrajové podmı́nky pro prouděńı a mechaniku.

Pro mechaniku jsou zadána horizontálńı a vertikálńı napět́ı (viz obr. 1 uprostřed). Při p̊usob́ıćım
mechanickém napět́ı některé pukliny zmenš́ı svoje rozevřeńı a jejich hydraulická vodivost po-
klesne. U vhodně orientovaných puklin v̊uči vněǰśımu napět́ı docháźı ke zvětšeńı rozevřeńı a hyd-
raulická vodivost roste. Mechanický model puklin (vzorce pro analytický výpočet napět́ı, defor-
mace, tuhost puklin, pevnostńı kritéria) byl převzat z [3]. Podprobnému popisu vlivu mechaniky
na hydraulické vlastnosti puklinové śıtě se věnuje [6].
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3 Redukce puklinové śıtě

Kv̊uli př́ılǐs velké hustotě puklinové śıtě vznikl požadavek na jej́ı redukci při přibližném zachováńı
hydraulických vlastnost́ı tak, abychom na řidš́ı śıti již mohli řešit složitěǰśı úlohu než prosté
prouděńı (prouděńı–mechanika, zahrnut́ı transportu částic). Pro redukci puklinové śıtě (tzn.
sńıžeńı počtu puklin a jejich pr̊useč́ık̊u – uzl̊u) lze použ́ıt několik postup̊u.

• Vymazáńı (volitelně) malých puklin: u dostatečně malých puklin lze předpokládat, že jejich
vliv na celkové prouděńı bude malý (rozevřeńı puklin je úměrné jejich délce).

• Vymazáńı slepých úsek̊u puklin: části puklin mezi posledńım pr̊useč́ıkem (uzlem) s jinou
puklinou a koncem pukliny nemaj́ı vliv na ustálené prouděńı v puklinové śıti.

• Slučováńı (volitelně) bĺızkých uzl̊u (obr. 2): ćılem je sńıžit celkový počet pr̊useč́ık̊u puklin.
Slučuj́ı se vždy dva uzly lež́ıćı na téže puklině, z̊ustane tak zachována sousednost v pukli-
nové śıti. Slučováńım uzl̊u lze odstranit miniaturńı úseky puklin a zlepšit poměr mezi
nejmenš́ım a největš́ım elementem v diskretizaci.

• Slučováńı souběžných úsek̊u puklin (obr. 3): v rámci slučováńı uzl̊u docháźı ke sloučeńı
celých úsek̊u puklin. V daném úseku se sečtou rozevřeńı slučovaných puklin a vodivost se
přepočte z vodivost́ı slučovaných puklin tak, aby byl zachován tok puklinou.

Obrázek 2: Ukázka slučováńı uzl̊u.

Obrázek 3: Princip slučováńı úsek̊u puklin.

Uvedené postupy lze r̊uzně kombinovat. Geometrické a hydraulické vlastnosti výsledné śıtě
závisej́ı na zvolených parametrech redukce (ty mohou být bud’ robustńı nebo jemné). Stejně
tak je možné ovlivnit výsledek redukce preferenćı dominantńıch puklin, které by neměly být
pr̊uběhem redukce ovlivněny. Na obr. 4 je výřez části śıtě před a po redukci. Zřetelné jsou dvě
dominantńı pukliny, které se při redukci neměńı.
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Obrázek 4: Ukázka části redukované śıtě.

Obrázek 5: Závislost výstupńıho toku (vlevo) a velikosti úlohy (vpravo) na velikosti vymazaných
puklin.

4 Ukázky výsledk̊u výpočt̊u

Byla provedena sada výpočt̊u s r̊uznými parametry redukce, bez zahrnut́ı vlivu mechanického
zat́ıžeńı i s ńım (vertikálńı napět́ı je 5 MPa a horizontálńı napět́ı 5 Mpa nebo 25 MPa). Výsledky
prezentované zde v abstraktu jsou pro okrajové podmı́nky znázorněné na obr. 1 vpravo, sledován
byl výstupńı tok dolńı část́ı hranice oblasti (podle předpoklad̊u při zvyšuj́ıćım se horizontálńım
zat́ıžeńı celkový vertikálńı tok klesá). Graf na obr. 5 vlevo popisuje změnu výstupńıho toku
hranicemi oblasti v závislosti na množstv́ı vymazaných malých puklin. Pukliny do velikosti 1m
ovlivňuj́ı celkový výstupńı tok jen velmi málo. Velikost úlohy však klesne významným zp̊usobem
(obr. 5 vpravo). Slučováńım uzl̊u a souběžných puklin lze dosáhnout daľśıho sńıžeńı velikosti
úlohy (např. pro śıt’ s vynechanými puklinami kratš́ımi než 1m s parametrem slučováńı 0.4 metru
o cca polovinu), zde však již hraje velkou roli vliv mechaniky. V úloze prouděńı bez zahrnut́ı
mechaniky je vliv slučováńı uzl̊u a souběžných puklin malý (změna toku je menš́ı než 10%),
při zahrnut́ı mechaniky je tento vliv nár̊ust hydraulické vodivosti puklin mnohem vyšš́ı, než
odpov́ıdá nár̊ustu vodivosti na neredukované śıti. Kromě toho, že docháźı ke změně geometrie
śıtě, to může být zp̊usobeno t́ım, že při redukci vzniká menš́ı počet mnohem širš́ıch puklin, pro
které je již použitý mechanický model nepřesný.
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5 Závěr

Testovaćı úlohy ukázaly, že lze výrazným zp̊usobem sńıžit velikost puklinové śıtě, aniž to (pro
vhodně zvolené parametry redukce) výrazně ovlivńı výslednou bilanci tok̊u hranićı oblasti. Zvo-
lit správně vyvážené parametry redukce neńı snadné a je třeba pokaždé testovat, nakolik změna
śıtě ovlivńı výsledné toky. Pro úlohy se zahrnut́ım mechaniky již docháźı k velké odchylce ve
výsledćıch oproti tok̊um na neredukované śıti. Tomu lze částečně předej́ıt spoč́ıtáńım vlivu me-
chanického zat́ıžeńı na dominantńı pukliny na neredukované śıti a poté provést redukci.

Redukované śıti s podobnými hydraulickými vlastnostmi jako śıt’ neredukovaná by měla v bu-
doucnu umožnit složitěǰśı výpočty, např. zahrnut́ı transportu či složitěǰśıch mechanických model̊u
pukliny, než na neredukované śıti. Vyvstává úloha nalézt zp̊usob, jak měnit materiálové parame-
try śıtě (např. permeabilitu) tak, aby výsledné toky hranicemi na redukované śıti byly shodné
(ve větš́ı mı́̌re než nyńı) s toky na śıti neredukované.
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Two-sided quaternionic polynomials
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1 Introduction

A general, quaternionic polynomial consists of a sum of terms of the type

tj(z) := a0j · z · a1j · · · aj−1,j · z · ajj , z, a0j , a1j , . . . , ajj ∈ H, j ≥ 0.

We call this term a monomial of degree j. Since there may be several terms of the same degree
we have to enumerate the terms. We do that in the form

tjk(z) := a
(k)
0j · z · a(k)1j · · · a(k)j−1,j · z · a

(k)
jj , k = 1, 2, . . . , kj , kj ≥ 0.

The case kj = 0 means that there is no monomial of degree j. A general, quaternionic polynomial
of degree n takes the form

p(z) :=

n∑
j=0

kj∑
k=1

tjk(z). (1)

We will treat quaternionic polynomials of the two-sided type

p(z) :=
n∑

j=0

ajz
jbj , z, aj , bj ∈ H, a0b0 ̸= 0, anbn ̸= 0, (2)

where H is the skew field of quaternions. These polynomials include also the one-sided polyno-
mials, where all coefficients are located on the left or on the right side of the powers, see [4].

By R, C we denote the fields of real and complex numbers, respectively. By H we denote the
skew field of quaternions that consists of elements of R4, equipped with the multiplication rule

ab := (a1b1 − a2b2 − a3b3 − a4b4, a1b2 + a2b1 + a3b4 − a4b3, (3)

a1b3 − a2b4 + a3b1 + a4b2, a1b4 + a2b3 − a3b2 + a4b1),

where a := (a1, a2, a3, a4), b := (b1, b2, b3, b4), aj , bj ∈ R, j = 1, 2, 3, 4.

The multiplication rule implies, in particular,

ℜ(ab) = ℜ(ba) and ra = ar for a, b ∈ H, r ∈ R. (4)

By 1, i, j, k we denote the standard units in H. Two quaternions a, b ∈ H are called equivalent ,
if there is an h ∈ H \ {0} such that b = h−1ah. Equivalent quaternions a, b will be denoted by
a ∼ b. The set

[a] :=
{
u ∈ H : u = h−1ah for all h ∈ H \ {0}

}
(5)

will be called an equivalence class of a.
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Equivalent quaternions a, b can be easily recognized by

a ∼ b ⇔ ℜa = ℜb and |a| = |b|, see [3], (6)

where ℜa denotes the real part , the first component of a, and |a| denotes the absolute value
of a = (a1, a2, a3, a4), |a| :=

√
a21 + a22 + a23 + a24 . We also introduce ℑa, the imaginary part ,

the second component of a. Let a be real. Then [a] = {a}, which means, that in this case, the
equivalence class consists only of one element, {a}. If a is not real, then [a] always contains
infinitely many elements,

[a] := {z ∈ H : ℜz = ℜa, |z| = |a|}, (7)

which may be regarded as the surface of a ball in R3. Let z ∈ H be not real and z = (z1, z2, z3, z4).
Then [z] contains exactly two complex numbers, a ∈ C and a ∈ C where a is determined by
ℜa = z1 and ℑa = +

√
z22 + z23 + z24 > 0. The complex number a will be called the complex

representative of [z].

All powers zj , j ∈ N, of a quaternion z have the form zj = αz + β with real α, β, see [6], [4]. In
order to determine the numbers α, β we set up the following iterations, see [4],

zj = αjz + βj , αj , βj ∈ R, j = 0, 1, . . . , where (8)

α0 = 0, β0 = 1,

αj+1 = 2ℜz αj + βj ,

βj+1 = −|z|2αj , j = 0, 1, . . .

2 Types of zeros of two-sided polynomials

Let z ∈ R be a real zero of p, defined in (1). Since a real z commutes with all quaternions the
polynomial can be written in the form

p(z) =

n∑
j=0

Ajz
j where Aj :=

kj∑
k=1

a
(k)
0j a

(k)
1j · · · a(k)jj , z ∈ R, (9)

i.e. as an one-sided quaternionic polynomial, see [4]. We will skip the discussion on real zeros in
the sequel.

By means of (8), the polynomial p can be written as

p(z) =
n∑

j=0

ajz
jbj =

n∑
j=0

aj(αjz + βj)bj =
n∑

j=0

αjajzbj +
n∑

j=0

βjajbj = C(z) +B(z), (10)

where C(z) =

n∑
j=0

αjajzbj , B(z) =

n∑
j=0

βjajbj . (11)

Let C be defined as in (11). Then, C : R4 → R4 is a linear mapping over R. Let z0 be nonreal.
Then, B(z), defined in (11), is constant for z ∈ [z0]. If p(z) = 0 for some z ∈ H, then C(z) =
B(z) = 0 or C(z) ̸= 0 and B(z) ̸= 0. For details, see [5].

We introduce two mappings τ1, τ2 : H → R4×4 by

τ1(a) :=


a1 −a2 −a3 −a4
a2 a1 −a4 a3
a3 a4 a1 −a2
a4 −a3 a2 a1

 ∈ R4×4, τ2(a) :=


a1 −a2 −a3 −a4
a2 a1 a4 −a3
a3 −a4 a1 a2
a4 a3 −a2 a1

 ∈ R4×4. (12)
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The first mapping τ1 represents the isomorphic image of a quaternion a = (a1, a2, a3, a4) in the
matrix space R4×4. Thus, we have τ1(ab) = τ1(a)τ1(b). The two matrices τ1(a), τ2(b) coincide if
and only if a = b ∈ R, see [2]. The second mapping τ2, see [1], has the remarkable property that
it reverses the multiplication order

τ2(ab) = τ2(b)τ2(a).

From the definition (12) it follows that

τ1(a)
T = τ1(a), τ2(b)

T = τ1(b).

Both matrices are orthogonal in the sense τ1(a)τ1(a)
T = τ1(a)τ1(a) = |a|2 I, τ2(b)τ2(b)T = |b|2 I,

where I is the (4× 4) identity matrix.

Let a := (a1, a2, a3, a4) ∈ H. We introduce an column operator col : H → R4 by

col(a) :=


a1
a2
a3
a4

 .

This column operator enables us to regard a quaternion as a matrix with one column and four
rows. It is linear over R, i. e.

col(αa+ βb) = αcol(a) + βcol(b), a, b ∈ H, α, β ∈ R.

For arbitrary quaternions a, b, c we have

col(ab) = τ1(a)col(b) = τ2(b)col(a),

col(abc) = τ1(a)τ2(c)col(b).

For more properties of these mappings, see [5].

Theorem Let p(z) := C(z) +B(z) be defined as in (10), (11). Then,

col(p(z)) =

 n∑
j=0

αjτ1(aj)τ2(bj)

 col(z) +
n∑

j=0

βjcol(ajbj) (13)

=: A(z)col(z) + col(B(z)), where (14)

A(z) :=

 n∑
j=0

αjτ1(aj)τ2(bj)

 ∈ R4×4, col(B(z)) :=
n∑

j=0

βjcol(ajbj). (15)

Instead of considering the equation p(z) = 0 we consider the equivalent equation

P (z) := col(p(z)) = A(z)col(z) + col(B(z)) = col(0) :=


0
0
0
0

 =: 0. (16)

From this formula we obtain: Let z be a nonreal zero of p such that equation (16) is valid.
Then, this equation remains valid if in A(z), B(z) the zero z is replaced with the complex
representative z0 of [z]. In order to find the nonreal zeros z ∈ H of p, defined in (2), it is
sufficient to find the complex representative z0 of [z], where, in general, z0 is not a zero of p.
The matrix A(z), occurring in (16) may be singular or non singular.
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From these results we obtain the classification of the zeros of p as follows: Let z be a zero of p,
defined in (2), and let z0 ∈ [z] be the complex representative of [z]. We classify the zeros z of p
with respect to the rank of A(z0). The zero z is called zero of type k if rank(A(z0)) = 4 − k,
0 ≤ k ≤ 4. A zero of type 4 (rank(A(z0)) = 0) is called spherical zero. It has the property that all
z ∈ [z0] are zeros. A zero of type 0 is called isolated zero. In this case z = −(A(z0))

−1col (B(z0))
is the only zero in [z0]. We also call a real zero an isolated zero.

Since the polynomial p(z) := z2 + 1 has already infinitely many zeros in H, it makes no sense
to count the individual zeros. Let p be any quaternionic polynomial of degree n ≥ 2. By #Z(p)
we understand the number of equivalence classes in H which contain zeros of p. We call this
number, essential number of zeros of p. Let p be a polynomial of degree n of the form described
in (2). It can be proofed, see [5], that #Z(p), the essential number of zeros of p, is not bounded
by n, but it will not exceed 2n.

3 Conclusions

For quaternionic polynomials p of the two-sided type, we have shown that the zeros z may fall
into five different classes, where for each zero the class can be determined by looking at the rank
of a (4 × 4) matrix A(z) defined in (16). If a zero in one class has been found, the described
technique allows to find all zeros in the same class.

The representation of a given quaternionic, two-sided polynomial p in the form P (z) := A(z)z+
B(z) can be used not only for the classification of the zeros, but it can be also successfully applied
to finding the zeros, by applying Newton’s method to P (z) = 0. It shows the typical feature,
that it may be slow in the beginning, but it will terminate then very quickly with quadratic
rate.
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Stability of non unique solutions

of the Coulomb friction problem

V. Janovský
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1 Discrete static contact problems with Coulomb friction

Let Ω ⊂ R2 be a linearly elastic body supported by a rigid foundation along the contact boun-
dary ΓC , see Figure 1. On ΓN and ΓD, Neumann and Dirichlet boundary conditions are prescri-
bed. We consider the static contact problems with Coulomb friction, see e.g. [1]. In particular,
we will investigate a discrete version of this problem, see e.g. [2]. This may be understood as
a FEM-approximation of the continuous mechanical problem:

rigid foundation

Ω

Γ
D

Γ
N

Γ
N

Γ
C

Figure 1: 2D elastic body Ω in frictional contact.

Let integers n and p define the degrees of freedom of the body Ω and the number of contact
nodes on ΓC , n ≥ 2p. Let f ∈ Rn and F be the given distributed volume force and the friction
coefficient. We seek for

• distributed displacement field u ∈ Rn,

• distributed normal and tangential stress components λν ∈ Rp and λt ∈ Rp.

First, we formulate the static Tresca friction problem: Given a prescribed slip stress g =
(g1, . . . , gp) ∈ Rp

+, find (u,λν ,λt) ∈ Rn ×Λν ×Λt(F ,g), such that

(Au,v)n = (f ,v)n + (λν ,Nv)p + (λt,Tv)p ∀v ∈ Rn, (1)

(µν − λν ,Nu)p + (µt − λt,Tu)p ≥ 0 ∀ (µν ,µt) ∈ Λν ×Λt(F ,g) . (2)

Here, A ∈ Rn×n is a positive definite stiffness matrix. The full-rank matrices N ∈ Rp×n and
T ∈ Rp×n represent the actions of the distributed contact forces along the normal and tangential
directions. The sets

Λν = Rp
− , Λt(F ,g) = {µt ∈ Rp : |µt,i| ≤ Fgi , ∀ i = 1, . . . , p} (3)

are the sets of Lagrange multipliers. Under generic assumptions, the problem (1)&(2) is uniquely
solvable for any data f , F and g.

78



To a given g ∈ Rp
+, let us assign the solution (u,λν ,λt) of the problem (1)&(2). In particular,

we consider the map Γ : Rp
+ → Rp

+, which is defined as

Γ(g) 7−→ −λν . (4)

The solution (u,λν ,λt) of (1)&(2), which corresponds to the fixed point Γ(g) = −λν = g
of the map Γ, is defined as a solution of the static Coulomb friction problem. Under generic
assumptions, the fixed point exists for any data f ∈ Rn and F > 0. If F is sufficiently small,
the fixed point is unique. In order to find non unique solution of the static Coulomb friction
problem, path-following technique was proposed, [4, 5].

2 Stability of the fixed point

Let r > 0 be a fixed parameter. The variational inequality (2) is equivalent to the equations

λν = PΛν (λν − rNu) , λt = PΛt(F ,g)(λt − rTu) , (5)

see e.g. [3]. Here, PΛν and PΛt(F ,g) are the orthogonal projections of Rp onto Λν and Λt(F ,g),
see (3). Hence, solving (1)&(2) is equivalent to finding roots of nonlinear equations: Define
G : Rp × Rn × Rp × Rp → Rn × Rp × Rp such that

g ∈ Rp , z ≡

 u
λν

λt

 ∈ Rn+2p 7−→ G(g, z) ≡

Au− f − N⊤λν − T⊤λt

λν − PΛν (λν − rNu)
λt − PΛt(F ,g)(λt − rTu)

 ∈ Rn+2p . (6)

Then, given g ∈ Rp
+, we seek for the (unique) root z = (u,λν ,λt) of G(g, z) = 0.

The map (6) is piecewise linear, see [6]. Hence, the differential ∇G is defined for almost all
(g, z) ∈ Rp

+ × Rn+2p. Since G is obviously related to Γ, see (4), the differential ∇Γ exists for
almost all g ∈ Rp

+.

We consider a fixed point Γ(g) = g, which is related to the root G(g, z) = 0, z = (u,λν ,λt),
g = −λν . Hence, (u,λν ,λt) is a solution of the static Coulomb friction problem. We say that the
fixed point is regular, if the differential ∇Γ(g) ∈ Rp×p exists. Let σ(∇Γ(g)) denote the spectrum
of the matrix ∇Γ(g):

Definition 1 We say, that a regular fixed point g ∈ Rp
+ of Γ is stable if it holds:

λ ∈ σ(∇Γ(g)) =⇒ |λ| < 1 .

If there exists λ ∈ σ(∇Γ(g)) such that |λ| > 1, we say that the fixed point g ∈ Rp
+ is unstable.

For the relevance of the above definition, see e.g. [7].

3 Example

Assume n = 4, p = 2. Let

A =


b −b 0 0

−b a −b 0
0 −b a −b
0 0 −b a

 , f =


fν,1
ft,1
fν,2
ft,2

 .

The state variable (u,λν ,λt) ∈ Rn ×Λν ×Λt(F ,−λν) is structured as follows:
(u,λν ,λt) = (uν,1,ut,1,uν,2,ut,2 , λν,1, λt,1 , λν,2, λt,2)

T .
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Let g = (g1, g2)
T ∈ R2

+ denote the slip stress. Consider a fixed point Γ(g) = g i.e., G(g, z) = 0,
z = (u,λν ,λt), g = −λν . Assume that the fixed point is regular. Let us compute ∇Γ(g) ∈ R2×2:

First, we define ∇H = Gz(g, z), the partial differential of the function G = G(g, z),

∇H=



b −b 0 0 −1 0 0 0
−b a −b 0 0 −1 0 0
0 −b a −b 0 0 −1 0
0 0 −b a 0 0 0 −1

rχ1
1 0 0 0 (1−χ1

1) 0 0 0
0 r(−1+χ2

1+χ
3
1) 0 0 0 2−χ2

1−χ3
1 0 0

0 0 rχ1
2 0 0 0 (1−χ1

2) 0
0 0 0 r(−1+χ2

2+χ
3
2) 0 0 0 2−χ2

2−χ3
2


where

χ1
1 = (λν,1−rut,1 ≤ 0) , χ2

1 = (Fg1+λt,1−rut,1 ≥ 0) , χ3
1 = (−Fg1+λt,1−rut,1 ≤ 0) ,

χ1
2 = (λν,2−rut,2 ≤ 0) , χ2

2 = (Fg2+λt,2−rut,2 ≥ 0) , χ3
2 = (−Fg2+λt,2−rut,2 ≤ 0) ,

are characteristic functions (i.e., if r ≤ s then (r ≤ s) ≡ 1, if r > s then (r ≤ s) ≡ 0.). Then,
consider the solutions of two linear systems (7). The relevant right-hand sides are defined as
minus the partial differential of G(g, z) with respect to g1 and g2:

∇H



δu1ν,1
δu1t,1
δu1ν,2
δu1t,2
δλ1ν,1
δλ1t,1
δλ1ν,2
δλ1t,2


= −



0
0
0
0
0

χ3
1 − χ2

1

0
0


, ∇H



δu2ν,1
δu2t,1
δu2ν,2
δu2t,2
δλ2ν,1
δλ2t,1
δλ2ν,2
δλ2t,2


= −



0
0
0
0
0
0
0

χ3
2 − χ2

2


. (7)

Finally,

∇Γ(g) = −
[
δλ1ν,1 δλ2ν,1
δλ1ν,2 δλ2ν,2

]
∈ R2×2 . (8)

As an example, we set a = 2, b = 1 and F = 4. In order to find non-unique solutions of the static
Coulomb friction problem, we apply the path-following technique, see [4, 5]: Consider a loading
path. In particular, let fν,1(α) = 0.4, fν,2(α) = 0.2α + 1.8, ft,1(α) = ft,2(α) = α. The continuous
response of the body is shown in Figure 2 (note that the solution components u and λt are
uniquely determined by λν). For example, for the parameter value α = ft,1(α) = −1.5, we
encounter five solutions of the Coulomb friction problem. Three of them are stable:

1. No1 : (u,λν ,λt) = (0; 0; 0; 0; −0.4; 1.5; −1.5; 1.5)T

classification: contact-stick, contact-stick
σ(∇Γ(−λν)) = {0, 0} =⇒ stable fixed point

2. No2 : (u,λν ,λt) = (−1.4;−1.8;−0.7;−1.1; 0; 0; 0; 0)T

classification: no contact, no contact

σ(∇Γ(−λν)) = {0, 0} =⇒ stable fixed point

3. No3 : (u,λν ,λt) = (−0.7;−1.1; 0;−0.05; 0; 0; −0.35; 1.4)T

classification: no contact, contact-slip
σ(∇Γ(−λν)) = {0, 2} =⇒ unstable fixed point
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Figure 2: The linear loading path: fν,1(α) = 0.4, fν,2(α) = 0.2α + 1.8, ft,1(α) = ft,2(α) = α. The
response: solid ... no contact, dash ... contact-stick, solid-gray ... contact-slip.

4. No4 : (u,λν ,λt) = (−0.7;−1.1; 0;−0.05; 0; 0; −0.35; 1.4)T

classification: no contact, contact-stick
σ(∇Γ(−λν)) = {0, 0} =⇒ stable fixed point

5. No5 : (u,λν ,λt) = (0;−0.05; 0; 0; −0.35; 1.4; −1.45; 1.5)T ,
classification: contact-slip, contact-stick
σ(∇Γ(−λν)) = {2, 0} =⇒ unstable fixed point.

Observe that the contact-slip at any of the contact points implies that the fixed point becomes
unstable.

Acknowledgement: The research was supported by the Grant Agency of the Czech Republic
(grant No. 201/07/0294) and also by the research project MSM 0021620839 of The Ministry of
Education, Youth and Sports, Czech Republic.
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[1] C. Eck, J. Jarušek: Existence results for the static contact problems with Coulomb friction.
Math. Models Methods Appl. Sci. 8, 445–468, 1997.
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1 VŠB-Technical University of Ostrava, Czech Republic
2 Universität Duisburg-Essen, Germany

1 Introduction

The application of preconditioning to variational inequalities requires some care, as the precon-
ditioning transforms the variables, turning the bound constraints into more general inequality
constraints. In our talk we consider two preconditioning strategies, using edge averages, for
FETI-DP (dual-primal finite element tearing and interconnecting) methods for the solution of
variational inequalities that describe equilibrium of a system of elastic bodies in unilateral con-
tact. We are interested to solve the partially bound constrained quadratic programming problem
to find

min
u∈Ω

ϕ(u), Ω = {u ∈ Rn : uI ≥ ℓI}, I = {1, . . . , k}, (1)

where ϕ(u) = 1
2u

TKu− uT f , ℓ and f are given column n-vectors, 1 ≤ k ≪ n, and K is an n× n
symmetric positive definite matrix.

2 Dual-primal FETI method

We consider FETI-DP method, originally introduced by Farhat, Lesoinne, Le Tallec, Pierson,
and Rixen [6]. In FETI-DP methods the original domain Ω is decomposed into several nonover-
lapping subdomains Ωi. The continuity of the primal solution at some nodes called vertices (or
corners) is implemented directly into the formulation of the primal problem so that one degree
of freedom is considered at each vertex. The continuity of the primal variables across the rest of
the subdomains interface is enforced by the Lagrange multipliers.

Using the theory of duality we can derivate the dual problem of the problem (1) in the form

min
λ≥0

Θ(λ), Θ(λ) =
1

2
λTFλ− λTd, (2)

where

F = −BBK
−1
BBB

T
B − (−BBK

−1
BBK

T
ΠBL)

T S̃−1
ΠΠ(−BBK

−1
BBK

T
ΠBL),

d = −BBK
−1
BBfB − (−BBK

−1
BBKΠB)

T S̃−1
ΠΠL

T (fΠ − KΠBK
−1
BBfB) + c,

S̃ΠΠ = LT (KΠΠ − KΠBK
−1
BBK

T
ΠB)L.

The continuity at the dual displacement variables and inequality constraints are enforced by
matrix B. The subscript Π and B denote primal variables and all other variables, respectively.
Minimizing Θ(λ) over λ ≥ 0 is equivalent to solving problem (1).
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3 Projector preconditioning for FETI-DP

The first preconditioning technique assumed here, preconditioning by a conjugate projector, was
proposed for linear systems, e.g., by Dostál [4], and extended for bound constrained problems
by Domorádová and Dostál [5].

Let F ∈ Rm×m be a symmetric positive definite matrix. A projector P is an F-conjugate projector
or briefly a conjugate projector if ImP is F-conjugate to KerP, or equivalently PTF(I−P) = PTF−
PTFP = O. If U is the subspace spanned by the columns of a full column rank matrix U ∈ Rm×p,
then

P = U(UTFU)−1UTF (3)

is a conjugate projector onto U . Let Ω0 = {λ ∈ Rm : λ ≥ o}. We use the conjugate projectors P
and Q = I−P to decompose our dual minimization problem (2) into the minimization on U and
the minimization on V ∩ Ω0, V = ImQ, we can write

min
λ≥0

Θ(λ) = Θ(λ0) + min
µ∈AV
µ≥0

1

2
µTQTFQµ+ µTg0,

where λ0 = PF−1d and g0 = −QTd. The solution λ̂ of the dual problem (2) can then be
expressed by λ̂ = λ0 + Qµ̂.

The matrix U is defined by the elements of the aggregation bases, where the Lagrange multipliers
corresponding to the variables of the coinciding edges are aggregated.

4 Transformation of basis

The second closely related preconditioning technique is an explicit transformation of basis intro-
ducing edge averages as new primal variables. This turns out to be an efficient method to
replace or enhance the coarse problem of the dual-primal FETI method, especially in three
space dimensions. We introduce certain edge or face averages or edge first order moments,
either additionally or instead of the assembly in a selected number of primal variables; see, e.g.,
Farhat, Lesoinne, Pierson [7], Klawonn and Widlund [8], Klawonn, Widlund, and Dryja [9],
and Klawonn and Rheinbach [10]. This technique was applied to the problems described by
variational inequalities by Jarošová, Klawonn and Rheinbach [2].

Let ûE denote the edge unknowns in the new basis, then uE = TEûE , where TE is the transfor-
mation matrix with the mutually orthogonal columns representing the new basis. This matrix
performs the desired change of the basis from the new basis to the original nodal basis. TE is
obtained from T̄E using Gram-Schmidt orthogonalization. Ordering averages last, T̄E can be
written as

T̄E =


1 . . . 0 1

. . .
...

0 1 1
−1 . . . −1 1

 . (4)

Such transformation matrix can be constructed separately for each edge. The resulting trans-

formation matrix T
(i)
E , which operates on all relevant edges of Ωi, is a direct sum of the relevant

transformation matrices TE associated with the edges of subdomain Ωi. T
(i)
E is a block diagonal,

where each block represents the transformation of variables of one edge.
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Since we assume in this case also the vertex constraints, the transformation matrix for all
variables of one subdomain Ωi is of the form

T(i) =

 I
(i)
I O O

O I
(i)
V O

O O T
(i)
E

 , (5)

where the subscripts I, V,E denote interior, vertex and edge nodes, respectively. I
(i)
I and I

(i)
V

denote identity matrices. Using the same decomposition as in (5), the matrix of the transformed
system has the form

T(i)TK(i)T(i) =

 K
(i)
II K

(i)T
V I K

(i)T
EI T

(i)
E

K
(i)
V I K

(i)
V V K

(i)T
V E T

(i)
E

T
(i)T
E K

(i)
EI T

(i)T
E K

(i)
V E T

(i)T
E K

(i)
EET

(i)
E

 . (6)

The edge variables are now split into two part: the dual variables and averages, so that ûE =
[û∆, ûA]. Using this notation, we can write

T(i)TK(i)T(i) =


K
(i)
II K

(i)T
V I K̄

(i)T
∆I K̄

(i)T
AI

K
(i)
V I K

(i)
V V K̄

(i)T
V∆ K̄

(i)T
V A

K̄
(i)
∆I K̄

(i)
V∆ K̄

(i)
∆∆ K̄

(i)T
∆A

K̄
(i)
AI K̄

(i)
V A K̄

(i)
∆A K̄

(i)
AA

 .
Ordering the primal variables last, we obtain

T(i)TK(i)T(i) =

 K
(i)
II K̄

(i)T
∆I K̂

(i)T
ΠI

K̄
(i)
∆I K̄

(i)
∆∆ K̂

(i)T
Π∆

K̂
(i)
ΠI K̂

(i)
Π∆ K̂

(i)
ΠΠ

 , where K̂
(i)
ΠΠ =

[
K
(i)
V V K̄

(i)T
V A

K̄
(i)
V A K̄

(i)
AA

]
. (7)

Assembling the primal contributions of each transformed K(i) to K̃ΠΠ, we obtain the transformed
stiffness matrix K̃. Now we can rewrite problem (2) as

min
û∈Ω

1

2
ûTTTKTû− fTTû = min

û∈Ω

1

2
ûT K̃û− ûT f̂ , (8)

where û, f̂ denote vector of unknowns and load vector in the new basis, respectively. Using the
process described in Section 2 we obtain the solution to this problem. To obtain the primal
solution we need to use the backward transformation uE = TEûE .

The theoretical results show that both described methods iterate in the same subspace and thus
have the same rate of convergence [2]. Thus the explicit construction of the dual matrix in the
projector can be replaced by the transformation of basis which works locally and can easily be
parallelized.

5 Numerical experiments

The theoretical results are confirmed by the results of numerical experiments. For example, in
Table 1 and Table 2, we illustrate the improvement on the solution of a model scalar problem,
displacement of membrane over a boundary obstacle. For the solution we use MPRGP algorithm
with the rate of convergence in terms of the spectral condition number of the Hessian
matrix [3, 1].

Acknowledgement: This work has been supported by the grants GA CR 201/07/0294, the
Ministry of Education of the Czech Republic No. MSM6198910027 and GA CR 103/09/H078.
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FETI-DP
H/h no preconditioned proj. preconditioning trans. of basis

4 32 22 22
8 51 30 31
16 82 41 42
32 118 58 61

Table 1: Iteration counts of dual problem for 4× 4 subdomains and changing H/h.

FETI-DP
num. of sub. no preconditioned proj. preconditioning trans. of basis

4 × 4 51 30 31
8 × 8 79 34 35

12 × 12 91 46 45
16 × 16 101 52 51
20 × 20 118 58 57

Table 2: Iteration counts of dual problem for changing number of subdomains and H/h = 8.
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1 Introduction

Our research focuses on optimization of supervised feed-forward neural networks with hybrid
neurons. The search space of possible network topologies is huge and increases even more with
growing number of inputs. There are two overlapping problems in neural network optimization,
one from the area of discrete optimization, second from continuous optimization domain. The
first problem is to find proper topology of the network and the second is to optimize its weights
(parameters of transfer functions in neurons).

In traditional (and most popular) algorithms the topology of a neural network is subject of
trial and error strategy. One has to estimate number, type and interconnections of neurons in
advance and then redefine it, when the optimization of weights fails.

More actual algorithms [1] build network neuron by neuron from a minimal form until a sufficient
accuracy is obtained.

These algorithms typically work with a uniform type of neurons (e.g. sigmoid). They can be
modified to incorporate more different types of neurons within one network, but it is neither
straightforward nor efficient.

In our GAME algorithm, we construct a neural network from neurons of various types. Such
hybrid neural network can easier adapt to problems (data sets) of various complexity. For simple
problems, a linear transfer neurons can be selected and for complex problems, a multi-layered
network with Gaussian and Sine neurons can better reflect relationships in data.

In this contribution, we show how to optimize such networks efficiently.

Topology and Weights Evolving Artificial Neural Networks [4] use evolutionary algorithms to
optimize topology together with weights of a network. Disadvantages of such approach are course
of dimensionality (in chromosome size) and problematic preserving of bigger networks with not-
yet-evolved weights. Our approach is to optimize the topology and weights independently.

2 Topology optimization of hybrid neural networks

We start from a minimal form and add layers of neurons until the accuracy on validation data
is increasing. In each layer, we run special niching evolutionary algorithm [3] preserving diver-
sity in the population of neurons. The evolutionary algorithm optimizes inputs of neurons, the
type and the structure of their transfer functions. Weights of transfer functions are optimized
independently (see next section).

Figure 1 demonstrates the GAME optimization procedure. A hybrid neural network is being
evolved and corresponding compatible parts of neurons’ chromosomes are crossed over and mu-
tated within the niching evolutionary algorithm running in each layer. For detailed description
of the algorithm, see [3].

86



1

2

3

4

5

6

7

Niching
GA

Linear neuron

1234567
1001000 not used

Polynomial neuron

Optimization methodInputs

1234567
0000110

Transfer function

Inputs

1234567
2115130

1234567
1203211

Transfer function

DE

Opt. m.

02
2
12

3
211 axxaxxay ++=

02211 axaxay ++=

not used

Stopping criteria, configurations,etc.

Figure 1: An example of Linear and Polynomial neurons and their chromosomes. The topology
of this hybrid neural network is optimized layer by layer by means of a niching genetic algorithm.

3 Weights optimization

In our hybrid neural networks, neurons differ in complexity. The simplest neurons have linear
transfer function. Then we have neurons with elementary non-linear functions such as Sigmoid,
Gaussian, Exponential and slightly more complex Polynomial, Rational or Sine. The most com-
plex neurons can contain embedded neural network (Cascade correlation network, Multilayered
Perceptron, etc.).

The most complex neurons use their own learning algorithms to optimize their weights and these
will not be discussed in this section.

Weights of simplest neurons (with a linear transfer function) can be estimated in a single step.
We use Least Mean Squared [2] method - weights are computed directly from training data using
a matrix inverse. This method works reasonably well except rare cases when a matrix is singular
and cannot be inverted.

This simple LMS method can be used also for neurons with polynomial transfer function, but
the results are not so good as for linear neurons (the pre-computed matrix is often singular).
The reason is that the error surface is more complex and an iterative method is needed.

Neuron

repeat

Optimization
method

starting poit

new values

weights
a1, a2, ..., an

error

final values

compute
error on
training

data

compute
gradient

of the
error

gradient

Figure 2: An iterative optimization of single neuron weights. The analytic gradient can be used
by the optimization method to fasten convergence.

The weights (coefficients) of non-linear neurons we optimize iteratively. We have implemented
several optimization algorithms. Some of them are gradient based, some nature inspired meta-
heuristics. In this contribution we focus on gradient based techniques (Quasi-Newton method,
Conjugate Gradient method, etc.). These algorithms modify weights in order to minimize the
training error of a single neuron. For all neurons, we have derived and implemented an analytic
gradient of their training error surface [3]. Optimization methods can use this information in
order to search the optima more efficiently (see Figure 2).
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We have experimented with many different neurons and data sets and we have found some
interesting conclusions.

For certain type of neurons, a good starting point is of crucial importance.

3.1 Starting point

The starting point is an initial configuration of weights for the iterative method to start with.
For example in case of Sigmoid neuron, it is sufficient to supply a random starting point around
zero (weights within (−0.3, 0.3) for normalized data). Large initial weighs prevent optimization
method to converge, because the sigmoid function is saturated (it is sensitive just in almost
linear part around zero).

yj = e
−

∑n
i=1(xij−ai)

2

2∗(an+i)
2

(1)

In case or Gaussian neuron (Equation 1), weights an+i should not be too small. Then, the error
surface is flat with a single deep pit and the optimization method is unable to locate this pit
with a global minima.

For Gaussian neuron, we use the maximum likelihood estimate of weights (means and standard
deviations computed on training data) as the starting point.

3.2 Error surface Inspection

We have implemented an inspection tool allowing us to monitor the the optimization process.
The training error is dependent variable and weights are independent variables. To be able to
see, how the training error surface looks like, we need to use projections of the multidimensional
space. We use scatterplot matrix of training error plots. For each plot, two weights are varied
in the interval (−15, 15), all other weights are fixed (values in actual iteration) and the training
error is computed in each point of the plot. The darker the background is, the lower the training
error. We visualize also the iteration history in each plot and observe, how the process converges.

Figure 3: The Sine neuron optimized by Quasi-Newton algorithm with numerical estimates of
the analytic gradient. Visualization of the training error surface from different perspectives (left)
and the convergence history (right).
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This visualization is particulary useful for getting information on training error surface comple-
xity in each dimension (how a change of individual weight influences the error).

In the Figure 3, you can observe the training log of the single Sine neuron on the Bosthouse data
set [3]. The Quasi-Newton method (QN) needed almost 1400 iteration to find optimal values of
24 weights (Bosthouse has 12 features, the output of the neuron is y =

∑12
i=1 sin(ai ∗xi+a12+i)).

The algorithm managed to escape from a local minima (iteration 170) and converged to a global
optima.

3.3 Analytic gradient

Note that supplying the optimization method the the analytic gradient is not always the best
option. In the optimization of the Sine neuron (Figure 3), the gradient was not supplied and
QN method estimated it numerically. Therefore much more iterations was needed. On the other
hand, when we supply the analytic gradient, QN relies on it much more and get stuck in a local
minima after 45 iterations.

In deeper layers of the network, error surface of units becomes increasingly complex and the
analytical gradient is important, because it saves the computational time exponentially.

4 Conclusion

We have described the optimization technique for hybrid multilayered neural networks. Our
algorithm is able to train networks efficiently, using advanced optimization methods. In this
contribution we also present several practical observations, that should help us to improve the
algorithm in future.
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Introduction

We first briefly review the TFETI based domain decomposition methodology adapted to the
solution of 2D and 3D multibody contact problems of elasticity [2]. Recall that TFETI imposes
the prescribed displacements by the Lagrange multipliers, so that all the subdomains are floating
and their kernels are a priori known. Then we show that the natural coarse grid of the rigid
body motions introduced by Farhat, Mandel, and Roux defines a projector to the subspace of
Lagrange multipliers with the solution. Moreover, the preconditioning by the projector reduces
the condition number of the dual Schur complement so that it is independent on the discretization
parameter h and accelerates also the non-linear steps.

Then we present our in a sense optimal algorithms [1] for the solution of resulting quadratic
programming problems. The unique feature of these algorithms is their capability to solve the
class of quadratic programming problems with spectrum in a given positive interval in O(1)
iterations. The theory yields the error bounds that are independent on conditioning of constraints
and the results are valid even for linearly dependent equality constraints.

Finally, we put together the above results to develop scalable algorithms for the solution of
both coercive and semi-coercive variational inequalities (see [3] and [4]). Rather surprisingly,
the results on the scalability of the TFETI based solution of contact problems are qualitatively
the same as the classical results of FETI for linear elliptic problems. The resulting algorithms
were implemented in MatSol library [5] developed in Matlab environment and tested on solution
of 2D and 3D contact problems. For these computations we used an HP Blade system, model
BLc7000 with one master node and eight computational nodes, each with two dual core CPUs
AMD Opteron 2210 HE. As parallel programming environment we use Matlab Distributed Com-
puting Engine and Matlab Parallel Computing Toolbox. These products allow users to offload
work from one Matlab session (the client) to other Matlab sessions (workers), see Figure 1. One
can use multiple workers to take advantage of parallel processing or only one worker to take
advantage of another computer’s speed or to keep the original Matlab client session free. Paral-
lel Computing Toolbox allows to run as many as four Matlab workers on the local machine in
addition to the original Matlab client session. On the other hand Matlab Distributed Compu-
ting Engine allows us to run as many Matlab workers on a remote cluster of computers as our
licensing allows. This parallel environment supports both parallel and distributed programming.
An example of parallel computation scenario corresponding to the TFETI based solution of
contact problems in mechanics is depicted in Figure 2.

At the end, we give results of numerical experiments with parallel solution of contact problems
discretized by up to more than 10 million of nodal variables to demonstrate that the scalability
can be observed in computational practice. The power of the results is demonstrated also by the
solution of difficult real world problems as analysis of the roller bearing of wind generator (see
Figures 3 and 4).
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Figure 1: Parallel programming using Matlab Distributed Computing Engine.

Figure 2: Parallel computation scenario.
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Figure 3: Roller bearing of wind generator.

Figure 4: Von Mises stress distribution.
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1 Introduction

Systems of linear algebraic equations generated by a numerical method applied to the fourth
order problems have usually worse properties than systems obtained from the second order
problems. In the case of many degrees of freedom, iterative methods have to be used because
the direct methods require unattainable computer memory and unacceptable computer time.
The large condition number of the matrix system leads to many iterations needed for prescribed
norm of the residual.

The high number of iterations can be reduced by a suitable preconditioner. This contribution
deals with the preconditioner based on the BOSS algorithm developed by Brezina in his PhD
thesis [1]. The method is based on aggregation of unknowns which is nonoverlapping at the
beginning and later the aggregation is changed to overlapping by smoothing. The size of overlap
has strong influence on the convergence as well as on the memory requirements.

2 BOSS method

Let system of linear algebraic equations be in the form

Ax = b (1)

and let the number of unknowns be n. The notation global vector is used for vectors from Rn

while local vectors is notation for vectors from Rni , where ni denotes the number of unknowns
in the i-th aggregate. The global vectors contain all unknowns and they are connected with
the whole problem. The local vectors are connected with particular smoothed aggregates and
contain only unknowns collected in one aggregate. The localization matrices are defined by the
relationship

g = Nili , (2)

where g denotes the global vector and li denotes the local vector of the i-th aggregate. The
reverse relation, i.e. map between global and local vectors, has the form

li = NT
i g . (3)

Local matrices of aggregates are defined by the relationship

Ãi = NT
i ANi . (4)

Local correction operator has the form

Ri = Ni(Ãi)
−1NT

i . (5)
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The inverse matrix (Ãi)
−1 is not computed and assembled. The matrices Ãi are factorized into

LLT , LDLT or LU form.

Coarse level correction operator has the form

R0 = P(Ã0)
−1PT , (6)

where P is the matrix of smoothed prolongator and the matrix Ã0 has the form

Ã0 = PTAP . (7)

More details about assembling of the matrix P can be found in [1] or [2]. Similarly to the
matrices Ãi, the matrix (Ã0)

−1 is not assembled because LLT , LDLT or LU factorization is
used for the matrix Ã0. The BOSS method solves the system (1) iteratively and the flowchart
of the method is summarized in Table 1.

1. initial vector z0 = x(k)

2. local correction on aggregates
for i = 1, . . . ,m: zi = zi−1 +Ri(b−Azi−1)

3. coarse level correction
vm = zm +R0(b−Azm)

4. local correction on aggregates - the reverse order
for i = m− 1, . . . , 0: vi = vi+1 +Ri+1(b−Avi+1)

5. vector of results x(k+1) = v0

Table 1: BOSS method.

The BOSS method is used as a preconditioner of the conjugate gradient method. It means, the
step

h(k+1) = C−1r(k+1) , (8)

where the residual r(k+1) is recalculated into new vector h(k+1) is solved by the BOSS method.

3 Numerical example

The behaviour of the preconditioner based on the BOSS method is shown on example of plate
analysis. Plate deflection is described by the fourth order partial differential equation. Square
domain is covered by three different meshes of finite elements which contain 100x100, 200x200
and 300x300 elements and the number of unknowns is 30 300, 120 600 and 270 900, respectively.
Two degrees of smoothing are used, namely 2 and 3.

Tables 2 and 3 contain data about aggregation in the case of smoothing degree equal to two
respectively to three. The notation used in Tables 2 and 3 is the following: NA is the number of
aggregates, MIN N is the minimum number of unknowns in aggregate, MAX N is the maximum
number of unknowns in aggregate, MIN NEGM is the minimum number of matrix entries stored
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in the skyline storage scheme in aggregate, MAX NEGM is the maximum number of matrix
entries stored in the skyline storage scheme in aggregate and TOT NEGM is the sum of numbers
of matrix entries stored in the skyline storage scheme in aggregates. Table 4 contains the numbers
of iterations for degree of smoothing 2 and 3. The number of iterations in the nonpreconditioned
conjugate gradient method needed for reduction of residual to the prescribed norm was about
20 200, 85 000 and 150 000 respectively.

NA MIN N MAX N MIN NEGM MAX NEGM TOT NEGM

100x100

10 3,753 5,022 291,246 457,674 3,767,298

40 1,101 1,899 48,273 128,697 3,579,471

70 636 1,266 27,246 69,906 3,659,471

100 459 1,077 15,750 51,603 3,834,897

200x200

10 13,722 15,060 1,600,305 2,895,477 25,098,081

70 2,181 3,414 158,715 309,684 15,190,809

130 1,191 2,322 66,021 185,634 14,547,495

200 840 1,617 37,851 100,644 14,742,756

300x300

10 28,131 32,619 5,498,691 9,769,518 70,659,540

100 3,231 4,953 255,795 555,552 36,662,874

300 1,191 2,262 62,376 177,045 33,739,974

Table 2: Plate problem; degree 2.

NA MIN N MAX N MIN NEGM MAX NEGM TOT NEGM

100x100

10 5,535 9,816 555,417 1,273,314 9,636,684

40 2,100 5,571 135,780 585,780 15,615,279

70 1,338 4,125 81,921 414,078 20,233,194

100 1,053 3,723 54,981 338,454 24,394,188

200x200

10 16,665 23,271 2,606,067 2,895,477 43,294,776

70 3,477 8,133 328,206 309,684 51,998,865

130 2,082 7,518 153,150 185,634 63,772,173

200 1,623 4,935 103,218 100,644 76,664,883

300x300

10 32,289 44,778 7,257,255 14,741,235 106,364,094

100 4,770 11,508 485,136 1,696,440 110,596,956

300 2,109 6,228 150,369 719,646 152,809,878

Table 3: Plate problem; degree 3.
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NA NI deg 2 NI deg 3

100x100

10 133 33

40 171 42

70 157 42

100 166 34

200x200

10 293 69

70 567 111

130 648 122

200 692 134

300x300

10 530 123

100 1153 216

300 1422 267

Table 4: Plate problem; the number of iterations.

4 Conclusion

The preconditioner based on the BOSS method is very efficient and it reduces significantly the
number of iterations. On the other hand, this preconditioner is relatively expensive because it
needs additional computer memory and large attention has to be paid to the implementation
of the method. Numerical tests show excellent properties for systems obtained from the fourth
order problems like plate or shell analyses while for the systems obtained from the second order
problems like plane stress the nonpreconditioned iterative method needs shorter time.
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Computational analysis of stress concentration due to an elliptic

hole in a degrading linearized elastic solid
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1 Introduction

We study boundary-value problems associated with a planar generalized linearized elastic solid
body with an elliptic hole in it, when one has a fluid diffusing through the solid. This diffusion
of fluid can either enhance or degrade the load carrying capacity of the body, based on how
the material moduli of the solid depend on the concentration of the fluid, that is whether the
presence of the fluid degrades or strengthens the material. We investigate the nature of the
solution when the aspect ratio tends to zero, a problem relevant to the stress singularity at
crack tips.

2 The problem setup

2.1 Model geometry

Geometry consists of a plane geometry of a finite square plate with elliptical hole at the centre
stretched by constant force on opposite sides. The problem is to find the distribution of stress
inside the body. This problem with a circular hole was used as a benchmark problem in [1], see
Figure 1.

By appealing to the symmetry of the problem it is possible to solve the problem on a cut-out
quarter of the original geometry, see Figure 2.

Figure 1: Model geometry. Figure 2: Computational domain.
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2.2 Governing equations

For the displacement field u : Ω → R2, corresponding to that of the linearized elastic solid with
elastic moduli dependent on the concentration c of the fluid diffusing through the material, the
governing equations take the form:

0 = grad (λ(c)divu) + div (µ(c)(gradu+ (gradu)T )), (1a)

∂c

∂t
= div (kgrad c). (1b)

Thus, the Cauchy stress tensor τ takes the form

τ = λ(c)divuI + µ(c)(gradu+ (gradu)T ) . (2)

2.3 Boundary and initial conditions

The body is loaded in uniform normal stress T = 4.5 along the y axis direction, and this provides
the boundary condition on Γ3, see Figure 2. We prescribe symmetry boundary conditions on
the Γ1 and Γ4. On the remaining parts of boundary Γ0 and Γ2 we prescribe homogeneous Neu-
mann condition. Concerning the boundary conditions for c we set c = 1 on Γ0 and homogeneous
Neumann condition on the remaining parts of the boundary. The initial conditions at t = 0 are
for simplicity set to be zero, i.e., u(0, ·) = 0 and c(0, ·) = 0 in Ω.

We carried out computational tests with the values for the model parameters taken partially
from the [1] and partially from [3]. For the particular case considered, k does not depend on c.
c ∈ [0, 1]. Due to this setting, the Lamé coefficients λ and µ are always positive.

3 Solution for the case of a body whose Lamé coefficients de-
pend on the concentration

We use the system (1) that takes into account the diffusion of the fluid. Particularly the depen-
dence of Lamé coefficients on the concentration c takes the form:

λ = λ0(1− c
2), µ = µ0(1− c

2). (3)

We examine the value of the components of the stress and strain τ22 and ε22 in the vicinity of
the point A and their asymptotic behavior. We solve the model by FEM with approximately
25.000 elements and 100.000 degrees of freedom.

The calculations were carried out for the time interval t ∈ [0, 30]. First, we study the value
of τ22 and ε22 at point A. Then, we examine the distance d, on the line from A to the upper left
corner of the geometry, from A to point where the stress drops to half of its value in A. For the
strain ε22, this distance is denoted by dE .

From the Figure 3 we can see that for high values of ratio of a : b, the stress is increasing linearly,
like in the purely elastic case, with respect to ratio of a : b. But its increase is slower. The speed
of growth of τ22 at the point A is increasing with increasing time. The same is true for ε22 at A.
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Figure 3: Dependence of τ22 and ε22 at the point A on the ratio of the axes of the ellipse a : b
in coupled model.

In the case of elastostatics the values (a/b)2d and (a/b)2dE are approximately constant for suffi-
ciently large ratios of a : b. Figure 4 depicts the development of the term (a/b)2d for model (1),
depending on the value of a : b. For low ratios of the axes of the ellipse the term (a/b)2d is
greater than for the static problem. The asymptotic behavior of the term (a/b)2d is the same as
in the case of an elastic model. The behavior of the term (a/b)2dE for the strain is much more
similar to the case of elastostatics.

Figure 4: Dependence of term (a/b)2d on the ratio of the axes of the ellipse for coefficient of
diffusion k = 100. On the right is the case with the stress τ22 and on the left case with the
strain ϵ22.

When the semi-major axis of the ellipse is along the direction of loading, we found that while
the classical elastostatic case, the stress component τ22 and the strain component ε22 change
linearly with the aspect ratio a : b. However, when diffusion is taking place, we found that
the components of stress and strain vary non-linearly for small values of the ratio of a : b but
the relationship becomes linear for larger values of the ratio of a : b. This result is depicted in
Figure 5.
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Figure 5: Dependence of τ22 and ε22 at the point A on the ratio of the axes of the ellipse in
coupled model.

4 Conclusion

The system that governs the degradation of the linearized elastic solid due to the diffusion of
a fluid leads to stresses and strains that differs significantly from that for the purely linearized
elastic model. Numerical results are consistent with the physical expectation that the stress will
increase with decreasing ellipse’s minor axis b. We find that this increase is linear with respect
to the aspect ratio.

Presented results will be published as part of the work [2].
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Theoretical analysis of discrete contact

problems with Coulomb friction
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1 Introduction

Contact problems describe behaviour of loaded deformable bodies in mutual contact. On the
contacting parts one often has to take into account non-penetration as well as frictional condi-
tions. The Coulomb law of friction leads to a complicated mathematical problem, in which a lot
of issues are still open. In the static case of linear elasticity, existence results have been obtained
for a small coefficient of friction F (see e.g. [7, 1]). More recently, it has been proven in [8] that
if a solution possesses a certain property, it is unique provided that F is small enough. On the
other hand, some examples of nonuniqueness are known for large F ([3, 4]).

In the finite element setting it is known that the discretized problem admits always a solution.
There are even results guaranteeing uniqueness of the solution (see e.g. [2]). However, most
of them are of global nature and need the assumption on the magnitude of the coefficient
of friction F again. To the author’s knowledge the only result concerning local uniqueness of
solutions, which admits even large F , has been presented in [5]. Therein, the discrete problem is
formulated as a system of non-smooth equations and a suitable version of the implicit function
theorem is employed to establish the result.

Having been inspired by this approach, our contribution deals with the local behaviour of discrete
solutions. It analyses dependence of solutions not only on the coefficient F as in [5] but also on
loading. In fact, the role of loading seems to be important, as well (see e.g. a discrete model
with non-unique solutions in [6]). Besides, qualitative properties of solutions are given.

Throughout the contribution we shall use the following notation: (., .)n stands for the scalar
product in Rn, ∥.∥n for the corresponding norm, whereas ∥.∥n,∞ denotes the max-norm in Rn:

∥v∥n,∞ = max
i=1,...,n

|vi|, v = (v1, . . . , vn) ∈ Rn.

The symbol ∥.∥n is also used for the matrix norm in Rn×n generated by the vector norm ∥.∥n.

2 Problem formulation

Let us consider a two-dimensional Signorini problem with Coulomb friction in which the coeffi-
cient of friction F depends on the spatial variable. A mixed finite element approximation of this
model leads to the following variational inequality:

Find (u,λν ,λt) ∈ Rn ×Λν ×Λt(F ,−λν) such that

(Au,v)n = (f ,v)n + (λν ,Bνv)p + (λt,Btv)p ∀v ∈ Rn,

(µν − λν ,Bνu)p + (µt − λt,Btu)p ≥ 0 ∀ (µν ,µt) ∈ Λν ×Λt(F ,−λν),

 (M)
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where u represents the displacement vector, λν and λt are the corresponding normal and tan-
gential Lagrange multipliers and n, p stand for the numbers of degrees of freedom and of the
contact nodes, respectively. Further, F = (F1, . . . ,Fp) ∈ Rp

+ characterizes the distribution of F
in the contact nodes and the Lagrange-multiplier sets Λν , Λt(.) are defined by

Λν = Rp
−,

Λt(F , g) = {µt = (µt,1, . . . , µt,p) ∈ Rp | |µt,i| ≤ Figi ∀ i = 1, . . . , p}, g = (g1, . . . , gp) ∈ Rp
+.

By A ∈ Rn×n we denote the symmetric stiffness matrix satisfying

∃ γ > 0 : (Av,v)n ≥ γ∥v∥2n ∀v ∈ Rn

and by Bν ,Bt ∈ Rp×n the matrices which represent the linear mappings associating with a dis-
placement vector its normal and tangential component on the contact zone, respectively. Next
we suppose that:

(j ) the Euclidean norm of each row vector of Bν , Bt is equal to one;

(jj ) each column of Bν , Bt contains at most one nonzero element;

(jjj ) ∃β > 0 : sup
0̸=v∈Rn

(µν ,Bνv)p + (µt,Btv)p
∥v∥n

≥ β∥(µν ,µt)∥2p ∀ (µν ,µt) ∈ R2p.


Finally, f ∈ Rn is the load vector.

3 Theoretical results

In this talk it will be shown that there exists at least one solution to problem (M) for any f ∈ Rn,
F ∈ Rp

+ and that this solution is unique provided that ∥F∥p,∞ < βγ/∥A∥n. Furthermore,
confining ourselves to F such that ∥F∥p,∞ ≤ Fmax for an arbitrary Fmax ∈ [0, βγ/∥A∥n), the
unique solution is a Lipschitz-continuous function of F :

∃ δ > 0 : ∥Sf (F)− Sf (F̄)∥n+2p ≤ δ∥F − F̄∥p,∞ ∀F , F̄ ∈ Rp
+, ∥F∥p,∞, ∥F̄∥p,∞ ≤ Fmax.

Here Sf : Rp
+ → Rn × Rp × Rp denotes the solution map for a fixed f ∈ Rn:

Sf (F) = (u,λν ,λt), F ∈ Rp
+, ∥F∥p,∞ ≤ Fmax,

where (u,λν ,λt) is the solution to (M) with the coefficient F and the load vector f .

To present local analysis of the solutions we shall restrict ourselves to coefficients F from the
following set:

A = {F ∈ Rp | Fi > 0 ∀ i = 1, . . . , p}.

In addition, we shall introduce the Lagrange-multiplier set Λt(.) which does not depend on F :

Λt(g) := {µt = (µt,1, . . . , µt,p) ∈ Rp | |µt,i| ≤ gi ∀ i = 1, . . . , p}, g = (g1, . . . , gp) ∈ Rp
+.

The equivalent formulation of (M) reads as follows:

Find (u,λν ,λt) ∈ Rn ×Λν ×Λt(−λν) such that

(Au,v)n = (f ,v)n + (λν ,Bνv)p + (Fλt,Btv)p ∀v ∈ Rn,

(µν − λν ,Bνu)p + (F (µt − λt),Btu)p ≥ 0 ∀ (µν ,µt) ∈ Λν ×Λt(−λν),

 (M∗)

where F := F (F) = diag{F1, . . . ,Fp} ∈ Rp×p.
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Our first result concerning local uniqueness of solutions to (M∗) says that the analysis of local
behaviour of a solution as a function of the coefficient F can be converted to the one of local
behaviour of the solution as a function of the load vector f . To state the assertion more precisely
we introduce the set-valued mappings S∗

F : Rn ⇒ Rn+2p and S∗
f : A ⇒ Rn+2p by

S∗
F (f) = {y}, f ∈ Rn,

S∗
f (F) = {y}, F ∈ A,

where {y}, y ≡ (u,λν ,λt), denotes the set of all solutions to problem (M∗) with the coeffi-
cient F and the load vector f in both cases. The only difference between these mappings is
that S∗

F associates the set of solutions to varying f for F fixed whereas S∗
f associates the set of

solutions to varying F for f fixed.

Theorem 1 Let F0 ∈ A, f ∈ Rn be arbitrary and let y0 ≡ (u0,λ0
ν ,λ

0
t ) ∈ Rn+2p be a solution

to (M∗) with the coefficient F0 and the load vector f . If S∗
F0 has a locally Lipschitz-continuous

branch containing y0 in a vicinity of f ∈ Rn, i.e. there exist a single-valued Lipschitz-continuous
function φF0 from a neighbourhood O of f into Rn+2p and a neighbourhood V̂ of y0 such that

φF0(f) = y0 and φF0(ξf ) = S
∗
F0(ξf ) ∩ V̂ ∀ ξf ∈ O,

then there are neighbourhoods U , V of F0, y0, respectively, and a single-valued Lipschitz-
continuous function σf : U → V satisfying

σf (F0) = y0 and σf (F) = S∗
f (F) ∩ V ∀F ∈ U .

To complete this analysis we shall give sufficient conditions guaranteeing the existence of locally
Lipschitz-continuous branches of the solution map S∗

F for F ∈ A fixed. We shall also show that
these conditions are not satisfied only for f restricted to a union of some subspaces of dimension
strictly lower than n.

4 An elementary example

In the end of the talk our theoretical approach will be illustrated on an elementary example
corresponding to a single linear triangular finite element depicted in Figure 1. This example is
taken from [5] and it is nothing else than a special case of a model studied in [6].

Denoting u := (uν , ut) and f := (fν , ft), its formulation can be written as follows:

Find (uν , ut, λν , λt) ∈ R4 such that

auν − but − λν − fν = 0,

− buν + aut − λt − ft = 0,

λν − P(−∞,0](λν − ruν) = 0,

λt − P[Fλν ,−Fλν ](λt − rut) = 0,


where the constants a := (λ + 3µ)/2 and b := (λ + µ)/2 depend on the Lamé coefficients
λ ≥ 0, µ > 0 characterizing the considered isotropic and homogeneous material and r > 0 is an
arbitrarily chosen parameter. Further, P(−∞,0] and P[Fλν ,−Fλν ] are projections of R1 onto the
intervals (−∞, 0] and [Fλν ,−Fλν ], respectively.
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Figure 1: Geometry of the elementary example.

It will be shown that the unicity of the solutions to this example depends not only on the
coefficient F but also on the load vector f . Moreover, we shall see that the structure of solutions
with respect to f is much simpler than the one with respect to F .
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D. Lukáš1, J. Szweda2

1Department of Applied Mathematics
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We are faced with a problem of acoustic noise analysis of a railway wheel while aiming at shape
optimization of its profile such that scattering at certain frequencies will be damped in the end.
This contribution presents the related forward problem and its efficient numerical solution using
a novelty variant of the adaptive cross approximation algorithm when applied to hypersingular
or double–layer Helmholtz operators, the compression time of which originally suffers from the
multiple-element support of the piecewise linear ansatz functions.

1 Galerkin direct BEM for the exterior Helmholtz problem

We consider an elastic structure of a railway wheel fixed along the axle and loaded with a har-
monic force on the perimeter. For a given material density ρ, elastic modulus E, Poisson ratio ν,
damping β and a load f of an angular frequency ω, we search for the harmonic displacement
field U(x, t) := Re{u(x) eiωt} such that

−∇ · σ(u)− ρω2 u = 0 in Ω,
u = 0 on ΓD,

σ · n = fn δa on ΓN,

where σij(u) = λδij∇ · u + µ(∂iuj + ∂jui), λ := Eν
(1+ν)(1−2ν) (1 + 2βi), µ := E

2(1+ν) (1 + 2βi),
and δa is a boundary Dirac distribution at a ∈ ΓN. For the numerical solution we employ the
lowest–order tetrahedral finite elements.

The resulting deformations provide the Neumann boundary data for the exterior Helmholtz
problem

−△p− κ2 p = 0, in Ωe := R3 \ Ω,
∂p/∂n = vn := ω2ρu · n, on Γ := ∂Ω,∣∣∣( x

|x| ,∇p(x)
)
− iκp(x)

∣∣∣ = O(|x|−2), x → ∞,

where κ := ω/c with the speed of sound c. The acoustical pressure is given by P(x, t) :=
Re{p(x) eiωt}. We consider the Galerkin direct approach to the boundary integral equation of
the latter problem, cf. [1], which reads as follows: Find p ∈ H−1/2(Γ) such that

∀v ∈ H−1/2(Γ) : ⟨Dp, v⟩Γ = ⟨(−1/2I +K ′)vn, v⟩Γ,

where I denotes the identity, the Helmholtz fundamental solution reads P (x,y) := eiκr/(4π|r|)
with r := |x− y| and where

⟨Dp, v⟩Γ :=
∫
Γ

∫
Γ

P (x,y)
[
(n(x)×∇ṽ(x)) · (n(y)×∇p̃(y))−κ2n(x)v(x) · n(y)p(y)

]
dS(y) dS(x),

⟨K ′vn, v⟩Γ :=

∫
Γ

∫
Γ

(∂P (x,y)/∂n(y)) vn(y)v(x) dS(y) dS(x).

We employ the lowest–order boundary element discretization using a numerical quadrature of
regularized kernels [2].
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2 Element–based adaptive cross approximation

Typically, the boundary of the railway wheel is discretized into 15112 triangles and 22668 no-
des, therefore, we aim at a sparsification of the orginally fully populated BEM matrices. The
adaptive cross approximation (ACA) [3] turns out to be a good choice. It relies on a hierar-
chical decomposition of a matrix into the admissible (far field) and nonadmissible (near field)
blocks so that the nonadmissible blocks are assembled completely, while the admissible ones are
adaptively approximated by a sum of rank–one matrices. The algorithm is easy to include into
an existing code, since it only requires assembling of rows and columns. This works fast for the
lowest–order discretization of the single–layer V as well as the double–layer operator K, since
either the rows or columns are related to the piecewise constant ansatz functions. However, in
case of the hypersingular matrix D the piecewise linear ansatz functions have multi–element
supports, thus, the entry evaluation costs more, moreover, the quadrature over many couples
of elements is performed several times. In our case, the ACA applied to K compressed to 12%
takes 25 minutes, while it takes 3.4 hours in the case of D compressed to 15%. Note that this is
not the case for the Laplace problem, since we have the representations D△ = T T

△ · V△ · T△.

As a remedy for the Helmholtz operator D, we propose to hierarchically cluster the matrix
element–wise, rather than nodal–wise, and approximate the admissible blocks by piecewise con-
stant ansatz functions, instead of piecewise linear, while using the admissible part of V similarly
to the Laplace case. Our element–based ACA approximation is as follows:

D =
∑
i

∑
j

D(i,j) =
∑
i

∑
j

T T
i Vij Tj − κ2RT

i

∫
Γi

∫
Γj

P (x,y)ϕ
(i)
k (x)ϕ

(j)
l (y) dS(y) dS(x)


k,l

Rj

≈ T T · V adm · T − κ2

4

∑
(i,j)∈N adm

RT
i ·
(
1/2 1/2

)
· V adm

ij ·
(
1/2
1/2

)
·Rj +

∑
(i,j)∈Nnon

D(i,j),

where N adm and N non denotes the admissible and the nonadmissible blocks, respectively. Here,
each element couple is entered at most once. In our case, the matrix D was assembled in less
than one hour. However, the application of D costs more. Note that our approach can also be
applied to K.

Finally, to validate our method, we applied it to a unit ball and cube for the problem with the
given solution p(x) := eiκ|x−xs|/(4π|x − xs|), where κ := 2π 151.6/340 and with the scatterer
placed at xs := (0.05, 0.05, 0.05). For example, the ball surface was discretized on 6 levels into
40–40960 elements. the relative solution error measured in L2(Γ) converged from 10−1 to 10−4.
The ACA assembling time for D at the finest level took 42397 seconds comparing 5515 seconds
in our approach, however, the 123 GMRES iterations took 496 seconds vers. our 6662 seconds.
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Variable metric methods with limited memory can be efficiently used for large-scale uncon-
strained optimization in case the sparsity pattern of the Hessian matrix is not known. These
methods are usually realized in the line-search framework so that they generate a sequence of
points xi ∈ Rn, i ∈ N , by the simple process

xi+1 = xi + αidi, (1)

where di = −Higi is a direction vector, Hi is a positive definite approximation of the inverse
Hessian matrix and αi > 0 is a scalar step-size chosen in such a way that

Fi+1 − Fi ≤ ε1 αi d
T
i gi, dTi gi+1 ≥ ε2 d

T
i gi (2)

(the weak Wolfe conditions), where Fi = F (xi), gi = ∇F (xi) and 0 < ε1 < 1/2, ε1 < ε2 < 1.
Matrices Hi, i ∈ N , are computed either by using a limited number (m≪ n) of variable metric
updates applied to the scaled unit matrix or by updating low dimension matrices. The first
approach, used in [9], is based on the computation of the direction vector di using the Strang
recurrences [8]. The second approach, used in [1], is based on the matrix expression described
below. To simplifying notation, we omit index i and replace index i+ 1 by +.

Variable metric method from the Broyden class use the update

H+ = H + UMUT = H + [d,Hy]

[
m1, m2

m2, m3

] [
d
Hy

]
= H +

1

b
ddT − 1

a
Hy(Hy)T +

η

a

(a
b
d−Hy

)(a
b
d−Hy

)T
, (3)

where d = x+−x, y = g+−g, a = yTHy, b = yTd and η is a free parameter. We need to express
m consecutive steps of (3) (with the initial matrix γI) in the form H+ = γI + ŪM̄ŪT , where
Ū ∈ Rn×2m and M̄ ∈ R2m×2m. In [1], the authors propose explicit expressions of the matrix
M̄ for three classic variable metric updates: DFP (η = 0), BFGS (η = 1) and the rank one
(η = b/(b − a)). For other values of the parameter η, such explicit expressions are not known.
In this contribution we describe another way, based on recursive construction of the matrix M̄ ,
which allows us to realize any member of the Broyden class of the variable metric updates. The
following theorem is proved in [7].

Theorem 1 Let H+ be a matrix defined by (3) and H = γI + ŪM̄ŪT . Then

H+ = H1 + Ū+M̄+Ū
T
+ ,

where Ū+ = [Ū , d, H1y] and

M̄+ =

 M̄ +m3 zz
T , m2 z, m3 z

m2 z
T , m1, m2

m3 z
T , m2, m3

 . (4)

Here m1 = (1/b)(ηa/b + 1), m2 = −η/b, m3 = (η − 1)/a are elements of matrix M , z = M̄ r̄
and r̄ = ŪT y.
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If i ≤ m, the construction of matrix Hi+1 follows straightforwardly from Theorem 1. Thus
we describe the construction of matrix Hi+1 in case i > m. We will assume that Hi+1−m =
γiI. At the beginning of the i-th iteration, we have available the rectangular matrix Ūi−1 =
[di−m, yi−m, . . . , di−1, yi−1] and the block upper triangular matrix

R̄i−1 =


dTi−myi−m, . . . dTi−myi−1

yTi−myi−m, . . . yTi−myi−1

. . . . . . . . . . . . . . . . . . . . .
0, . . . dTi−1yi−1

0, . . . yTi−1yi−1

 ,
whose every block contains two rows and one column. First we determine matrix
Ūi = [di−m+1, yi−m+1, . . . , di, yi] from matrix Ūi−1 by deleting the first two columns and adding
the last two columns. Similarly easily we obtain matrix R̄i from matrix R̄i−1. Only the last
column ŪT

i yi of this matrix has to be computed. Furthermore, we compute recursively matrix
M̄i = M̄ i

i in such a way that we set

M̄ i
i−m+1 =

[
m1

i−m+1, m2
i−m+1

m2
i−m+1, m3

i−m+1

]

(indices 1, 2, 3 are now placed up) and for i−m+1 ≤ j ≤ i−1, compute vector zj = M̄ i
j r̄j , where

r̄j is j − i +m-th column of matrix R̄i, whose every even element is multiplied by number γi
(since Hi+1−m = γiI), and set

M̄ i
j+1 =

 M̄ i
j +m3

j+1 zjz
T
j , m2

j+1 zj , m3
j+1 zj

m2
j+1 z

T
j , m1

j+1, m2
j+1

m3
j+1 z

T
j , m2

j+1, m3
j+1

 .
Vector Hi+1gi+1 is computed by the formula

Hi+1gi+1 = γigi+1 + [di−m+1, γiyi−m+1, . . . , di, γiyi] M̄i

[di−m+1, γiyi−m+1, . . . , di, γiyi]
T gi+1

(even columns of matrix Ūi are multiplied by number γi). As we can see, approximately
6mn operations (addition and multiplication) are consumed in i-th iteration. However, approxi-
mately 2(m − 1)n operations can be saved, if we compute and store inner products dTj gi+1,

yTj gi+1 instead of dTj yi, y
T
j yi, i−m+1 ≤ j ≤ i. Then the first m− 1 inner products dTj yi, y

T
j yi,

i −m + 1 ≤ j ≤ i − 1 can be determined from the previously computed inner products by the
formulas dTj yi = dTj gi+1−dTj gi, yTj yi = yTj gi+1− yTj gi, i−m+1 ≤ j ≤ i− 1. Thus it is necessary

to compute only two inner products dTi yi, y
T
i yi. Inner products d

T
j gi+1, y

T
j gi+1, i−m+1 ≤ j ≤ i

can be used for the computation of direction vector si+1, so we save 2mn operations.

The method described has been tested by using a set of 60 test problems with 1000 variables.
This set (Test25) was obtained by merging the sets Test14, Test15, Test18 described in [6], which
can be downloaded from http://www.cs.cas.cz/luksan/test.html (together with report [6]).
The results of the tests are listed in Table 1, where NIT is the total number of iterations, NFV
is the total number of function and gradient evaluations, NF is the number of failures and TIME

is the total CPU time. We have tested the original LBFGS subroutine, described in [2], and our
realizations of limited memory variable metric methods implemented in the UFO system [5]. In
Table 1, BFGSSTR denotes the limited memory BFGS method with the Strang recurrences [9] (an
analogy of LBFGS), BFGSBNS denotes the limited memory BFGS method with compact matrices
described in [1], BFGSNEW denotes the limited memory BFGS method with recursive construction
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of matrix M̄ described above, LMVMNEW denotes the limited memory variable metric method with
recursive construction of matrix M̄ that use parameter η proposed in [4], and CG denotes the
conjugate gradient method. Note that the first four rows in Table 1 correspond to different
implementations of the BFGS method and that our approach gives the best results.

Method NIT NFV F TIME

LBFGS 110406 117226 2 43.38
BFGSSTR 99125 104085 - 37.56
BFGSBNS 91650 96235 - 36.89
BFGSNEW 85430 89796 - 33.50
LMVMNEW 92877 99033 - 34.61

CG 144990 222460 1 60.77

Table 1: Test results.
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Quantitative analysis of numerical solution

for the Gray-Scott model
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1 Introduction

Reaction-diffusion systems are a class of systems of partial differential equations of parabolic
type. It includes mathematical models describing various phenomena e.g. in the fields of physics,
biology and chemistry. Gray-Scott model is one of these models. It was first introduced in 1984
by P. Gray and S. K. Scott [1]. It is a mathematical model of the autocatalytic chemical reaction
U +2V −−→ 3V , V −−→ P . U , V are reactants and P is final product of the reaction. Chemical
substance U is being continuously added into the reactor and the product P is being continuously
removed from the reactor during the reaction. Later it has been extensively studied e.g. by
Wei [2], Winter [3], Ueyama [5], Dkhil [6], Doelman [7]. This model is well known to exhibit rich
dynamics, see e.g. Nishiura [4]. There exist chemical systems exhibiting features similar to those
of the Gray-Scott model, see e.g. Mazin [8] and references therein.

2 Problem formulation

We study the Gray-Scott in 2D. Assume that Ω ≡ (0, L)× (0, L) is an open square representing
the square reactor, where the chemical reaction takes place, ∂Ω is its boundary andν is its outer
normal. Then initial-boundary value problem for the Gray-Scott model is a system of two partial
differential equations of parabolic type ut = a∆u− uv2 + F (1− u), vt = b∆v + uv2 − (F + k)v
in Ω×(0, T ) with initial conditions u(·, 0) = uini, v(·, 0) = vini and zero Neumann boundary
conditions ∂u

∂ν |∂Ω= 0, ∂v
∂ν |∂Ω= 0. Functions u, v are unknowns representing concentrations of

chemical substances U , V . Parameter F denotes the rate at which the chemical substance U
is being added during the chemical reaction, F + k is the rate of V → P transformation and
a, b are constants characterizing the environment in the reactor. This system may be rewritten
in several dimensionless forms. We use the one which is used also e.g. in [3, 8, 9].

3 Numerical schemes

Computational studies of the Gray-Scott model show difficulties in convergence. We compare
two numerical schemes for solution of the initial-boundary value problem defined in Sect. 2 in
order to disclose details of these problems. Both of them are based on the method of lines.
For spatial discretization we used structured numerical grids consisting of squares for the finite
difference method and of triangles for the finite elements method To solve resulting systems of
ordinary differential equations Runge-Kutta-Merson method (see e.g. [10], [11]) was used.
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3.1 FDM based numerical scheme

Let h be mesh size such that h = L/(N − 1) for some N ∈ N+. We define numerical grid
as set ωh = {(ih, jh) | i = 0, . . . , N − 1, j = 0, . . . , N − 1}. For function u : R2 → R we define
a projection on ωh as uij = u (ih, jh). We introduce finite differences ux1,ij = (ui+1,j − ui,j)/h,
ux1,ij = (ui,j − ui−1,j)/h ux2,ij = (ui,j+1 − ui,j)/h, ux2,ij = (ui,j − ui,j−1)/h, and define approxi-
mation ∆h of the Laplace operator ∆ as ∆huij = ux1x1,ij + ux2x2,ij . Then semi-discrete scheme
has the following form

d

dt
uij(t) = a∆huij + F (1− uij)− uijv

2
ij ,

d

dt
vij(t) = b∆hvij − (F + k)vij + uijv

2
ij , (1)

plus discrete initial and boundary conditions. This system is solved by Runge-Kutta-Merson
method.

3.2 FEM based numerical scheme

To induce the semi-discrete scheme we begin with variational formulation of the problem defined
in Sect. 2 and rewrite it in weak form. Then we proceed to discretize this problem in space. Let
Th be a partition of domain Ω into disjoint triangles τ . At vertices Pj of Th we define pyramid
functions Φ1, . . . ,ΦNh

, Φi(Pj) = δij and define finite dimensional space Sh ⊂ H1(Ω) to be
spanned by these functions. We search for Galerkin approximation uh, vh of weak solution in Sh
thus uh =

∑Nh
1 αjΦj and vh =

∑Nh
1 βjΦj . Real-valued functions αj , βj are solution of Galerkin

approximation problem

d

dt
(uh, φ1) + a(∇uh,∇φ) = (f1, φ), ∀φ ∈ Sh

d

dt
(vh, φ2) + b(∇vh,∇φ) = (f2, φ), ∀φ ∈ Sh

with uh|t=0= uini,h, vh|t=0= vini,h, where f1(u, v) = F (1−u)−uv2, f2(u, v) = −(F+k)v+uv2 and
(·, ·) denote the L2 inner product. Substituting basis functions Φ1, . . . ,ΦNh

instead of arbitrary
functions φ ∈ Sh we get system of 2Nh ODEs with initial conditions

A ˙α(t) + aBα(t) = C(α(t), β(t)),

A ˙β(t) + bBβ(t) = E(α(t), β(t)),

Aα(0) = D,

Aβ(0) = F. (2)

Lagrange interpolation was used for numerical integration to get approximation of vectors C, E,
D, F . Using method of lumped masses and renumbering unknowns we can rewrite the problem
for finding functions αj , βj in the following form

d

dt
uij(t) =

2a

3h2
[ui+1,j + ui+1,j+1 + ui,j−1 + ui,j+1 + ui−1,j +

+ui−1,j+1 − 6uij ] + F (1− uij)− uijv
2
ij

d

dt
vij(t) =

2b

3h2
[vi+1,j + vi+1,j+1 + vi,j−1 + vi,j+1 + vi−1,j +

+vi−1,j+1 − 6vij ]− (F + k)vij + uijv
2
ij (3)

plus corresponding initial and boundary conditions. This system is solved by Runge-Kutta-
Merson method.
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4 Numerical simulations

We performed a series of computations to perform quantitative comparison of our 2D numerical
schemes. According to our results the Gray-Scott model is sensitive on the mesh parameter size,
which means, the numerical solution may change notably when refining the computational grid.

In our numerical simulations we use square domain Ω ≡ (0.0, 0.5)×(0.0, 0.5). Initial data are
considered such that uini + vini = 1 hold within the computational domain Ω and vini consists
of one or several spots.

We met initial data and model parameter values combinations for which the following situations
occurred. First, we have results where FDM based numerical scheme is less dependent on the
space stepping, that is, the numerical results are visually more similar in wider range of mesh
parameter sizes then in case of the FEM based numerical scheme. We have also results, where
the FEM based numerical scheme is less dependent on the space stepping. We were able to see
agreement in numerical results obtained in both of these cases from certain mesh parameter
size. But we have also met combinations where we were not able to see the solutions becoming
visually more and more similar while refining the numerical grid. Example is given below in
Fig. 1.

(a), FDM, grid 800×800 (b), FEM, grid 800×924

Figure 1: Dependence of pattern in numerical solution on numerical scheme and grid size for
given model parameters (a = 2 · 10−5, b = 1 · 10−5, F = 0.0737, k = 0.061882, L = 0.5) and
initial data (one spot in the middle of the domain) at fixed time t=8000.

In Fig. 1 we demonstrate the case, where we were not able to obtain agreement of numerical
results by the numerical schemes from Sect. 3. Using the same model parameters and initial data
we could see lines growing in orthogonal directions. Depicted are solutions at time t = 8000.
Each of numerical schemes provided the same pattern within wide range of grid sizes. We tried
to successively refine the numerical grid up to 2000×2000 and corresponding size of triangle grid.
For the same model parameters as in Fig. 1 an agreement of numerical results was observed for
different initial data.
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5 Conclusion

We focused on quantitative comparison of two numerical schemes which solve the Gray-Scott
model in 2D. Our numerical simulations show that for certain combinations of initial data and
model parameter values we may not get an agreement of numerical results provided by these
numerical schemes while refining the numerical grid. Example result is given.
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1 Introduction

Biotechnology with microalgae and photo-bioreactor (PBR) design is nowadays regaining atten-
tion thanks to emerging projects of CO2 sequestration and algae biofuels. Nevertheless, there do
not exist reliable methods as well as programming software neither for modeling, simulation and
control of microbial growth in photo-bioreactors, nor for PBR design [3]. Modeling in a predictive
way the photosynthetic response in the three-dimensional flow field seems today unrealistic, be-
cause the global response depends on numerous interacting intracellular reactions, with various
time-scales. The physiological state of any cellular system and its impact on growth and product
formation is the result of a complex interplay between the extracellular environment and the
cellular machinery. The design of PBR in which microalgae cells function as factories as well
as the prediction of suitable PBR operating conditions is further complicated because of the
dynamic variations of the extracellular environment.

Our main goal is to develop and implement the mathematical model of microalgae growth in
a general PBR as tool in the design of photo-bioreactors and the optimization of their per-
formance. In our previous works we studied an adequate multi-scale lumped parameter model
which well describes the principal physiological mechanisms in microalgae: photosynthetic light-
dark reactions and photoinhibition [5], as well as its model parameter estimation [8, 7]. In [6] we
presented how to construct a distributed parameter model consisting mainly in determination
of hydrodynamic dispersion coefficient as function of space coordinates.

This paper deals with the non-homogeneous steady-state one-dimensional reaction-diffusion sys-
tem (3) with a special boundary condition. However, equation (3) is rewritten in form of two
ordinary differential equations (ODE), which leads after re-scaling to the standard form of the
singularly perturbed system [4]. The purpose of such an operation is to infer the asymptotic
properties of the reaction-diffusion system (3).

2 Modelling photosynthetic microorganism growth

The photosynthetic microorganism growth description is usually based on the so-called microbial
kinetics, i.e. on the lumped parameter models (LPM) describing the photosynthetic response
in small cultivation systems with a homogeneous light distribution [9]. However, there is an
important phenomenon, the so-called flashing light enhancement, which demands some other
model than it residing in the artificial connection between the steady state kinetic model and
the empiric one describing the photosynthetic productivity under fluctuating light condition.
Nevertheless, even having an adequate dynamical LPM of microorganism growth, see e.g. phe-
nomenological model of so-called photosynthetic factory [5, 8], another serious difficulty resides
in the description of the microalgal growth in a PBR, i.e. in a distributed parameter system.
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In order to develop the distributed parameter model (DPM) of a microorganism growth, two
main approaches for transport and bioreaction processes modelling are usually chosen:
(i) Eulerian infinitesimal, and (ii) Eulerian multicompartmental. While the Eulerian infinitesimal
approach, leading to the partial differential equations (PDE), is an usual way to describe trans-
port and reaction systems, the multicompartmental modelling framework, resulting in an ODE
system, is mostly used in the process engineering area. This second approach, based on balance
equation among compartments with finite control volume, has been recently treated by Bezzo et
al. [2]. The authors presented there a rigorous mathematical framework for constructing hybrid
multicompartment/CFD models. Hybrid there means that the fluid flow description is resolved
by a CFD code, and does not make a part of the ODE system of governing equations.

In the sequel, we adopt the first approach aiming to clarify in an analytical manner the role of
hydrodynamic mixing, or more precisely, the mechanism of the photosynthetic microorganism
growth enhancement due to the microbial cell transport by radial dispersion. Nevertheless, in the
future work, our results should serve to develop a numerical scheme for setting up the optimal
compartment size in the multicompartment/CFD models.

3 Model development

Transport equation for microbial cells (concentration c) as the function of spatial coordinates
and time gets the next form [1]:

∂c

∂t
+∇ · (vc)−∇ · (De∇c) = R(c) , (1)

where R(c) is the source term (representing microbial growth, unit: cell m−3s−1), v represents
the velocity field, and De is the dispersion coefficient, which corresponds to diffusion coefficient
in microstructure description and becomes mere empirical parameter suitably describing mixing
in the system. De is influenced by the molecular diffusion and velocity profile. When mixing is
mainly caused by the turbulent micro-eddies, the phenomenon is called the turbulent diffusion
and a turbulent diffusion coefficient is introduced e.g. in [1]. The reaction obviously depends
on some variables, usually called as substrates. For our special case of photosynthetic growth
in a PBR, the role of only one limiting substrate (the nutrients are supposed to be present in
a sufficient amount, i.e. they do not limit the growth) fulfills the irradiance, in other words,
an external forcing input u. Moreover we suppose the rectangular PBR geometry illuminated
from one side, i.e. the irradiance level is decreasing from the PBR wall to PBR core. Thus, the
PBR volume (our computational domain) can be divided into layers with the same irradiance
level, transforming the 3D problem into the one-dimensional. Consequently, the description of
cell motion in direction of light gradient, i.e. perpendicular to PBR wall and at the same time
perpendicular to the direction of convective flow, is of most interest. This motion is caused by
the just mentioned turbulent diffusion. Furthermore, we can introduce the dimensionless spatial
coordinate x, and the dimensionless dispersion coefficient p(x) by

r := xL , De := p(x) D0 ,

where L and D0 (unit: m2s−1) are the PBR length in direction of light gradient, and a constant
with some characteristic value, respectively.

Furthermore we introduce the dimensionless concentrations c and css as

y :=
c

cm
, yss :=

css
cm

,

where cm is a characteristic (e.g. maximal) concentration of c.
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Based on the photosynthetic factory model [5, 8] we have for the reaction term R the relation

R(c) = −k (c− css) , (2)

where k is the rate (unit: s−1) associated with the dynamic process by which is the concentration c
approaching to some value css depending only on the external input u(x).

As we are interested on the steady state solution of (1), i.e. ∂c
∂t = 0, we finally obtain

−
[
p(x)y′

]′
+ q(x) y = q(x) yss, y′(0) = 0, y′(1) = 0 , (3)

where q(x) := k(u(x)) L2

D0
.

4 Asymptotic properties of the reaction-diffusion system (3)

In the process engineering literature, there exists a concept of well mixed unit. This construct
is further used e.g. in the multicompartmental or multizonal models [2, 6]. The crucial question
is: When a compartment with finite volume is well mixed? For a reaction-diffusion system, it
has to depend on the so-called Damköhler number.

In our previous work, in sake of the benchmark problem, we were looking for an analytical so-
lution of the equation (3). Realizing that it was impossible, we did not search the solution in
the usual form of y = y(x), but we wanted to find the mean value of y in the interval x ∈ [0.1],
i.e. to compute the expression

∫ 1
0 y(x) dx. Based on [10], the boundary value problem (3) was

transformed into the related initial value problem. It consisted in finding solutions of two homo-
geneous equations, two differential equations with the right-hand side and computing a solution
of a system of two algebraic equations. By this procedure, we could have obtained a function
value and its derivative in an arbitrary point. The original differential equation with boundary
conditions was thus transformed into a differential equation with an initial condition. As we
have needed only a solution in several points, we could apply the above procedure repeatedly.
Finally, the value

∫ 1
0 y(x) dx would be obtained by a suitable numerical method.

Now, we are developing an asymptotic method. Let first define d
dxy := z, then the resulting first

order ODE system is

d

dx
y = z ,

d

dx
[p(x)z] = q(x) (y − yss) , z(0) = 0, z(1) = 0 . (4)

Consequently, if we define k0 as follows: k := kA(u(x)) k0, then the Damköhler number of

second type could be defined as DaII := k0L2

D0
, and the dependence of the solution of (4) on

DaII := ε→ 0 could be studied.

The following ODE (5)

d

dx
[p(x)z] = εkA(u(x)) (y − yss) , z(0) = 0, z(1) = 0 , (5)

thanks to the properties of its right hand side clearly satisfies the sufficient condition for applying
the averaging method [4]. One can therefore approximate (4) as follows (always when ε→ 0):

d

dx
y = z ,

d

dx
[p(x)z] = ε

∫ 1

0
[kA(u(x)) (y − yss)] dx , z(0) = 0, z(1) = 0 . (6)
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Modelling of the airflow through vocal folds
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1 Introduction

The simulation of compressible flow in time dependent domains plays an important role in several
areas of human activities, for example development of aircrafts and turbines, civil engineering, car
industry or medicine. The presented work introduces implementation of numerical techniques
like the ALE (Arbitrary Lagrangian-Eulerian) methods and the discontinous Galerkin finite
element methods in these domains and creates the bases of the further work in the direction of
fluid-structure interaction. We are specially interested in the medical apllications of this type of
problem. For this reason the problem of the airflow through vocal folds is treated.

2 Continuous problem

We deal with compressible flow in a bounded domain Ωt ⊂ IR2 depending on time t ∈ [0, T ].
We assume that the boundary of Ωt consists of three disjoint parts ∂Ωt = ΓI ∪ΓO ∪ΓWt , where
ΓI and ΓO represent the inlet and outlet and ΓWt represents moving impermeable walls.

We consider the Navier-Stokes equations in the conservative form [1]:

∂w

∂t
+

2∑
s=1

∂fs(w)

∂xs
=

2∑
s=1

∂Rs (w,∇w)

∂xs
in Ωt, t ∈ [0, T ] , (1)

where

w = (ρ, ρv1, ρv2, E)T ∈ IR4,

fs(w) = (ρvs, ρv1vs + δ1sp, ρv2vs + δ2sp, (E + p)vs)
T , s = 1, 2,

Rs (w,∇w) = (0, τs1, τs2, τs1v1 + τs2v2 + k
∂θ

∂xs
)T , s = 1, 2,

τij = λδijdivv + 2µdij(w), dij(w) =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, i, j = 1, 2.

We use the following notation: ρ – density, p – pressure, E – total energy, (v1, v2) – velocity
vector, θ – absolute temperature, cv > 0 – specific heat at constant volume, γ > 1 – Poisson
adiabatic constant, µ > 0, λ – viscosity coefficients, k > 0 – heat conduction coefficient. We set
λ = −2µ/3. System (1) is completed by the thermodynamical relations

p = (γ − 1)(E − ρ |v|2 /2), θ =

(
E

ρ
− 1

2
|v|2

)
/cv, (2)
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and equipped with inicial condition w(x, 0) = w0(x), x ∈ Ωt and boundary conditions:

Inlet ΓI : ρ|ΓI×(0,T ) = ρD,

v|ΓI×(0,T ) = vD = (vD1, vD2)
T ,

2∑
j=1

(
2∑

i=1

τijni

)
vj + k

∂θ

∂n
= 0 on ΓI × (0, T );

Moving wall ΓW : vΓW×(0,T ) = zD,
∂θ

∂n
= 0;

Outlet ΓO :

2∑
i=1

τijni = 0,
∂θ

∂n
= 0 j = 1, 2.

Here zD is the velocity of the moving wall.

3 ALE formulation

The time dependence of the domain is taken into account with the aid of a regular one-to-one
ALE mapping (cf. [3])

At : Ω̄0 −→ Ω̄t, i.e. At :X 7−→ x = x(X, t) = At(X). (3)

We define the ALE velocity:

z̃(X, t) =
∂

∂t
At(X), t ∈ [0, T ], X ∈ Ω0, (4)

z(x, t) = z̃(A−1
t (x), t), t ∈ [0, T ], x ∈ Ω̄t

and the ALE derivative of a function f = f(x, t) defined for x ∈ Ωt and t ∈ [0, T ]:

DA

Dt
f(x, t) =

∂f̃

∂t
(X, t), where f̃(X, t) = f(At(X), t), X ∈ Ω0. (5)

By the chain rule,
DAf

Dt
=
∂f

∂t
+ z · ∇f =

∂f

∂t
+ div (zf)− f div z. (6)

This leads us to the ALE form of the Navier-Stokes equations:

DAw

Dt
+

2∑
s=1

∂gs(w)

∂xs
+wdivz =

2∑
s=1

∂Rs (w,∇w)

∂xs
, (7)

where gs(w) = fs(w)− zsw, s = 1, 2.

4 Discretization

The problem is discretized in space by the discontinuous Galerkin finite element method ([1], [2])
using piecewise polynomial approximations of the components of the state vector w, in general
discontinuous on interfaces between neighbouring elements from a triangulation of the polygonal
approximation Ωht of the domain Ωt. In this work we use the simplest variant of the discontinuous
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Galerkin finite element method for solving Navier-Stokes equations, the incomplete interior
penalty Galerkin (IIPG) scheme.

Scheme obtained by space discretization by the discontinuous Galerkin finite element method
represents a system of ordinary differential equations, which must be discretized with respect to
time. We use the method developed in [2] for inviscid flow. A backward Euler method is used
for a discretization of the ALE derivative

DAwh

Dt
(x, tk+1) ≈

wk+1
h (x)− ŵk

h(x)

τk
, x ∈ Ωhtk+1

, (8)

where ŵj
h(x) = wj

h

(
Atj

(
A−1

tk+1

)
(x)
)
, x ∈ Ωhtk+1

and wj
h(x) = wh(x, tj). The nonlinear

terms in the scheme are linearized with the aid of properties of expressions gs and Rs. This
treatment leads to the linear system,which is is solved on each time level by the GMRES method
with a block diagonal preconditioning.

5 Numerical experiments

We consider compressible flow in the channel, whose shape is inspired by a shape of vocal folds
and supraglottal spaces as shown in Figure 1. The lower channel wall between the points A
and D is changing the shape according to the given function of time and axial coordinate:

y(x, t) = (a1 + at)

[
sin

(
3π

2
+ π

x− xA
xC − xA

)
+ 1

]
+ d, x ∈ [xA, xC ], (9)

y(x, t) = 2(a1 + at)cos

(
π

2

x− xC
xD − xC

)
+ d, x ∈ [xC , xD],

at = a2sin (2πft) , t ∈ [0, T ]; a1 = 0.18, a2 = 0.015,

where f = 5.38 · 103. The motion of the upper wall of the channel is treated in a similar way.
This movement is interpolated inside the domain resulting in the ALE mapping At.

Figures 2 show streamlines at different time instants t = 504, 558, 612, 666 during the fourth
period of the motion.

6 Conclusion

Using our program code based on the finite element approximation, we solved the viscous com-
pressible flow in time-dependent domains with shape motivated by the simulation of the airflow

Figure 1: Geometry of computational domain.
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Figure 2: Streamlines at time t = 504, 558, 612, 666.

in human vocal folds. The computational results show that it is not possible to simplify the
mathematical model supposing the axisymmetry of the solution, because the unsymmetric flow
structure is developed in spite the computational domain is axisymmetric.

Future work will be focused on the better approximation of the computational domain to the real
geometry of the glottis and the vocal tract and mainly on the application of the fluid-structure
interaction consisting in the solution of coupled system describing flow and structure behaviour.
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Algebraic multilevel preconditioning of coarse problems

of balanced domain decomposition methods

with nodal constraints

I. Pultarová
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1 Coarse problems of balanced domain decomposition methods
by constraints

A method of balanced domain decomposition by constraints (BDDC) [3] is an iterative algori-
thm for numerical solution of partial differential equations discretized by the finite element (FE)
method. The BDDC method exploits a nonoverlaping partition of a domain, and within each
iteration, the main computation consists in solving particular boundary problems on every sub-
domain and in solving a certain coarse grid problem. There are many ways how to define the
coarse base functions. In our considerations, they are defined by nodal values (degrees of freedom,
DOFs) in few nodes on interfaces of subdomains and have minimal energy on each subdomain
and null normal derivatives on all interfaces. Then in general, the coarse functions are discon-
tinuous on interfaces of subdomains up to the nodes where the coarse DOFs are defined. Since
the coarse problem itself can be large, an appropriate preconditioning is desired [2].

2 Algebraic multilevel preconditioning of the coarse problem

We present a new strategy of preconditioning of the coarse problem of BDDC. This is based on
an algebraic multilevel (AML) preconditioning technique [1]. In spite of classical application of
AML preconditioning directly to finite element bases, we utilize a hierarchical splitting of the
coarse space within the BDDC algorithm. A quality of AML preconditioning is measured by the
constant γ in the strengthened Cauchy-Buniakowski-Schwarz (CBS) inequality [1].

We provide some numerical estimates of the CBS constants for two- and three-dimensional
elliptic problems: an equation of diffusion and an equation of linear elasticity. For discretisation,
bilinear or trilinear FEs are used with rectangular or prismatic supports, respectively. The
subdomains are of a rectangular or prismatic shape as well. Coarse base functions are defined
by all corner nodal values on subdomains. In every problem a hierarchical splitting of the coarse
base system is constructed with coefficients that are equal to that for hierarchical transformation
of bilinear or trilinear FEs, respectively. In each test we specify only a bilinear form a(·, ·) used
in a weak formulation of the problem, because neither boundary conditions nor a right hand
side of the equation influence the estimates of the CBS constant γ. The estimate of γ can be
calculated from exploiting the properties of the coarse function on a single reference subdomain
only. A mesh of a reference subdomain may influence the value of γ. Then in each graph,
a number of elements in a reference subdomain is indicated. Our main interest is to examine
a behavior of γ when varying the coefficients of the bilinear form a(·, ·).
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Diffusion equations (D2) and (D3). Bilinear form a(·, ·) is

a(u, v) =

∫
Ω
(∇u)TC∇v dx,

where

C =

(
1 c
c d

)
or C =

 1 c12 c13
c12 d2 c23
c13 c23 d3


for two- and three-dimensional problems (D2) and (D3), respectively. The values of c, d, di
and cij are constant on subdomains and matrix C is positive definite on every subdomain.

The estimates of γ2 for the case c = 0 and d ∈ (0, 1⟩ are displayed in Figure 1 on the left for five
different meshes of a reference subdomain. On the right, values of γ2 are presented for d = 1 and
c ∈ (−1, 0⟩. The estimates of γ2 for the case d2 = 1, cij = 0 and d3 ∈ (0, 1⟩ are shown in the left
part of Figure 2 for four different meshes of a reference prismatic subdomain. In the right hand
side of Figure 2, values of γ2 for the case di = 1 and c12 = c13 = c23 ∈ (−0.5, 0⟩ are presented.
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Figure 1: Numerical estimates of γ2 for hierarchical splitting of coarse problems for
equation (D2). Coefficients c = 0 and d ∈ (0, 1⟩ (left), and the case d = 1 and c ∈ (−1, 0⟩
(right).

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

c
ij
 = 0, d

2
 = 1, d

3
 Î  (0,1]

γ2

 

 
1 x 1 x 1
2 x 2 x 2
12 x 12 x 12
1 x 1 x 12

−0.5 −0.4 −0.3 −0.2 −0.1 0
0.5

0.6

0.7

0.8

0.9

1

d
i
 = 1,  c

12
 = c

13
 = c

23
 Î  (−0.5,0]

γ2

 

 
1 x 1 x 1
2 x 2 x 2
12 x 12 x 12
1 x 1 x 12

Figure 2: Numerical estimates of γ2 for hierarchical splitting of coarse problems of BDDC for
equation (D3). Coefficient d2 = 1 and cij = 0 and varying d3 ∈ (0, 1⟩ (left), and d2 = d3 = 1
and c12 = c13 = c23 ∈ (−0.5, 0⟩ (right) for different meshes of a reference subdomain.
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Elasticity equations (E2) and (E3). Bilinear form a(·, ·) is

a(u,v) =

∫
Ω
2µ(∇(s)u)T∇(s)v + λ divu · divv dx,

where ∇(s)u = ε(u) and

εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

The share modulus of a material µ and the Lamé constant λ can be substituted by the Poisson
ratio ν and by the modulus of elasticity E via µ = E/2/(1 + ν) and λ = Eν/(1 + ν)/(1− 2ν).

The estimates of γ2 for elasticity equations for ν ∈ ⟨0, 0.5) can be found in Figure 3. Two-
dimensional cases for partitions of a rectangular subdomain 1× 1, 5× 5, 50× 50 and 1 × 50,
respectively, are shown on the left. A three-dimensional case for five different meshes of a refe-
rence prismatic subdomain can be found in the right part of Figure 3.
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Figure 3: Numerical estimates of γ2 for hierarchical splitting of the coarse problems for equati-
ons (E2) (left) and (E3) (right). Varying Poisson ratio ν ∈ ⟨0, 0.5) and different meshes of
a reference subdomains.
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Hybrid dynamical systems: verification

and error trajectory search
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Modern complex technical systems usually consist not only of physical components, but also
of computer equipment interacting with these physical components. As a consequence, such
systems cannot be modeled based on physical laws formulated in the language of continuous
mathematics alone. In addition, one needs discrete modeling formalisms. Hybrid (dynamical)
systems are a formalism for modeling the resulting combined continuous-discrete behavior. In
the talk we will describe this formalism, and discuss algorithms for the automatic analysis of
such hybrid systems.

When restricted to their continuous part, such hybrid systems amount to ordinary differential
equations, when restricted to their discrete part, to finite state machines. However, the inter-
action between those two parts introduces significant additional difficulty that obstructs the use
of classical numerical error analysis. Moreover, such systems are usually non-deterministic, in
the sense that they not only have a single initial state, but a whole set of initial stats, and in the
sense that starting from a given unique state, they may allow an uncountable set of trajectories
(e.g., resulting from differential inequalities). A further difficulty results from the fact that one
is often interested in analyzing the behavior of hybrid systems over an unbounded time horizon.

As a consequence, more or less all problems of analyzing hybrid systems are undecidable [4],
although one can get much further with a weaker notion of quasi-decidability [3, 1, 5].

In the talk we will discuss discuss algorithms for proving that a given hybrid system does not
reach an element of a set of states considered to be unsafe (in whatever unbounded time) [6, 2].
Moreover, we will discuss the use of optimization techniques to find trajectories the violate this
property [7].
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1 Introduction

Computations with sparse matrices are widespread in scientific projects. The performance of
mathematical operations with sparse matrices depends strongly on the used matrix storage
format. In this paper, we compare the performance during the execution of some basic routines
from linear solvers and its dependency on the used format.

The paper consists of four parts: a general introduction of sparse matrix storage formats, per-
formance testing, conclusions, and suggestions for future work.

2 Usual sparse matrix formats

In the following text, we assume that A is real sparse matrix of order n. Let nZ be the total
number of nonzero elements in A.

2.1 The coordinate (XY) format

The coordinate (XY) format is the most simplest sparse format. The matrix A is represented by
three linear arrays Elem,X, and Y . The array Elem[1, . . . , nZ] stores the nonzero values of A,
arrays X[1, . . . , nZ] and Y [1, . . . , nZ] contain X- and Y -positions, respectively, of the elements
with the nonzero value.

2.2 The compressed sparse row (CSR) format

The most common format (see [4]) for storing sparse matrices is the compressed sparse row (CSR)
format. A matrix A stored in the CSR format is represented by three linear arrays Elem,Addr,
and Ci. The array Elem[1, . . . , nZ] stores the nonzero elements of A, the array Addr[1, . . . , n]
contains indexes of initial nonzero elements of rows of A, and the array Ci[1, . . . , nZ] contains
column indexes of nonzero elements of A. Hence, the first nonzero element of row j is stored at
the index Addr[j] in array Elem.

2.3 Register blocking formats

Widely-used formats(XY and CSR) are easy to understand, however sparse operations (like
matrix-vector or matrix-matrix multiplication) using these formats are slow (mainly due to in-
direct addressing). Sparse matrices often contain dense submatrices (blocks), so various blocking
formats were designed to accelerate matrix operations. Compared to the CSR format, the aim of
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these formats (like SPARSITY[2] or CARB[3]) is to consume less memory and to allow a better
use of registers and the vectorization of the computation. Algorithms using these formats are
very fast, because they are tuned for a target architecture.

2.4 Quadtree data format

Quadtree (for details see [6, 5, 1]) is the recursive tree data structure. Such a tree represents
a partition of the matrix into submatrices (“nodes” in the graph terminology). There are different
types of nodes in the tree. Inner nodes of the quadtree are divided into “Mixed” or “Empty”
nodes. Leafs of the quadtree are divided into “Full” or “Empty” nodes.

Great advantages of the quadtree are the following:

• Easy and fast conversion from common sparse matrix storage formats like CSR or XY.

• Modifications (adding or removing nonzero elements) of the quadtree are relatively easy.

• The recursive style of programming and recursive style of storage (“Divide and Conquer”
approach) leads to codes with a surprising performance due to the better cache memory
utilization.

3 Discussion about formats

3.1 Drawbacks of usual formats

• XY and CSR formats: These formats doesn’t support fast adding or removing nonzero
elements.

• Register blocking formats: These formats suffer from a large transformation overhead,
are designed only for limited set of operations, doesn’t support fast adding or removing
nonzero elements.

• Quadtree data format: A big drawback of the quadtree structure is a larger control
and data overhead compared to standard formats. The standard quadtree implementation
leads to a space (and execution) inefficiency. To remove inefficiencies, we use the additional
types of leafs: modified versions of the XY and the CSR formats. The modification means
that we express all coordinates relatively to the beginning of the submatrix (node). We
call “XY” and “CSR” respectively this type of node.

Our second improvement is the elimination of “Empty” nodes, because they do not contain
any useful information. They are simply represented by the NULL pointer.

3.2 Dynamic formats

All mentioned formats (except quadtree) doesn’t support fast adding or removing nonzero ele-
ments. We must modify previous formats to eliminate this drawback. For example, the imple-
mentation of the CSR format is modified in this way: The array Addr[1, . . . , n] contains pointers
to rows of A (separated arrays containing the values of nonzero elements and its column indexes).
Since all information are stored in dynamic arrays, we called these modified formats “dynamic”.
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3.2.1 Combined format

The new “combined” format consists of dynamic CSR and CSC format. So, this format consumes
two times more space but it should be fast independently on the memory pattern (row-like or
column-like).

4 Evaluation of the results

4.1 Test applications

We have implemented these basic routines from the linear algebra that are often used in linear
solvers:

• to get an value at the given location in the sparse matrix (operation GET XY),

• to set an value at the given location in the sparse matrix (operation SET XY),

• to find the maximal value in the row in the sparse matrix (operation MAX),

• to add values of given row to other row in the sparse matrix (operation ADD),

• the transposition of the sparse matrix (operation TRANSP),

• the multiplication of a sparse matrix by a dense vector (operation SPMV),

4.2 Test data

We have used 32 real matrices from various technical areas from the MatrixMarket and Harwell
sparse matrix test collection.

4.3 HW and SW configuration

All results were measured on Intel Core 2 Quad Q8200 (only one core was used) at 2.33 GHz,
4 GB of the main memory at 400 MHz, running OS Windows XP Professional SP3 with the
following cache parameters: L1 cache is 32 KB data cache, L2 cache is 2 MB data.
SW: Microsoft Visual Studio 2003, Intel compiler version 10.1 with switches for maximal per-
formance.

4.4 Measured results

Comments on Table 1:

• The performance of GET XY and SET XY operations depend on the ratio nZ
n , for higher

values (“long” rows) can be improved by the binary search method.

• The performance of SET XY operation is different in the case if the former value of given
location is nonzero (the update of the value=hit) or is zero (the new nonzero entry=miss).

• The TRANSP operation in Combined format consists only of exchanging few pointers!
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operation/format CSR CSC Combined Quad

operation GET XY {0 . . .++} {0 . . .++} {0 . . .++} +
operation SET XY (hit) {0 . . .++} {0 . . .++} {0 . . .++} +
operation SET XY (miss) {− . . .+} {− . . .+} {− . . . 0} +

operation MAX ++ − ++ +
operation ADD ++ −− − 0

operation TRANSP 0 0 ++ +
operation SPMV + − + 0

Table 1: Performance comparison of the formats. The symbol −− denotes very slow, − denotes
slow, 0 denotes average, + denotes fast, ++ denotes very fast.

5 Conclusion

We have tested the performance of some very basic routines used in linear solvers. Measured
results satisfy the theoretical assumption that used data format affects strongly the performance.
Since every format has some drawbacks and overheads, it is difficult to choose a “winner”, but if
the numbers of these operations and the memory pattern are known, we can choose the suitable
data storage format.

6 Future works

• We should optimize some routines and deeply measure the performance on various plat-
forms.

• We should develop a new format similar to combined format but with “weak coherency”.
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MSM6840770014.
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[4] I. Šimeček: Performance aspects of sparse matrix-vector multiplication. Acta Polytechnica,
46(3/2006), 3–8, January 2007.

[5] D.S. Wise: Matrix algorithms using quadtrees (invited talk). In: ATABLE-92, 11–26, 1992.

[6] D.S. Wise: Ahnentafel indexing into morton-ordered arrays, or matrix locality for free. In:
Euro-Par 2000 Parallel Processing, volume 1900 of Lecture Notes in Computer Science,
774—783, 2000.

130



Application of the BDDC method to the Stokes problem
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1 Introduction

The Balancing Domain Decomposition based on Constraints (BDDC) is one of the most advanced
preconditioners suitable for parallel iterative solution of large systems of linear equations arising
from finite element (FE) analysis. The method was introduced by Dohrmann [2] and the theory
is due to Mandel and Dohrmann [6]. Li and Widlund reformulated the BDDC method in [5] to
a simple global approach. The underlying theory of the BDDC method covers problems with
symmetric positive definite matrix. An important application that leads to such kind of systems
is structural analysis by linear elasticity theory.

The solution of the incompressible Stokes problem by a mixed finite element method leads to
a saddle point system with symmetric indefinite matrix. Thus, the standard theory of BDDC
does not cover this important class of problems. In the first attempt to apply BDDC to the incom-
pressible Stokes problem proposed by Li and Widlund [4], the optimal preconditioning properties
of BDDC were recovered. The approach is based on the notion of benign subspaces, which is
restricted to using discontinuous pressure approximations, and the authors present results for
piecewise constant approximations. Moreover, the approach in [4] requires quite nonstandard
constraints between subdomains, thus making the implementation more problem specific and
difficult.

In this paper, we follow a different approach. We have implemented a parallel version of the
BDDCmethod and verified its performance on a number of problems arising from linear elasticity
(e.g. [9]). Here, we investigate the applicability of the method and its implementation to the
Stokes flow ‘as is’. Although it is beyond the standard theory of the BDDC method, contributive
results are obtained using only minor changes and minimal amount of custom coding to the
implementation for elasticity problems.

It has been known for a long time, that conjugate gradient method is able to reach solution
also for many indefinite cases (e.g. [7]), although it may fail in general. Our investigation is also
motivated by recent trends of numerical linear algebra to investigate and often prefer the use of
PCG method with a suitable indefinite preconditioner over more robust but also more expensive
iterative methods for solving saddle point systems such as MINRES, BiCG or GMRES [8].

Results for the Stokes flow in two and three dimensions are presented. All these problems
are obtained using mixed discretization by Taylor–Hood finite elements. These elements use
piecewise (bi/tri)linear pressure approximation, which does not allow the approach via benign
spaces of [4], but are very popular in the computational fluid dynamics community.

131



2 BDDC domain decomposition method

Let Ω be a bounded domain in R2 or R3, let U be a finite element space of piecewise polynomial
functions v continuous on Ω and U ′ its dual space. Let a(·, ·) be a bilinear form on U × U and
f ∈ U ′, and let ⟨·, ·⟩ denote the duality pairing of U ′ and U . Consider an abstract variational
problem: Find u ∈ U such that

a(u, v) = ⟨f, v⟩ ∀ v ∈ U . (1)

For the case of steady Stokes flow we adopt the following slightly unusual notation

a(u, v) = ν

∫
Ω
∇uh : ∇vhdΩ−

∫
Ω
ph∇ · vhdΩ +

∫
Ω
ψh∇ · uhdΩ, (2)

⟨f, v⟩ =

∫
Ω
f · vhdΩ. (3)

Solution u = (uh, ph) consists of the discretized vector field of velocity and the discretized scalar
field of pressure, ν represents the kinematic viscosity of the fluid, f represents the external load,
and v = (vh, ψh). For the case of Stokes problem, a(u, v) is only symmetric indefinite [3].

Write the matrix problem corresponding to (1) as Au = f . The domain Ω is decomposed
into N nonoverlapping subdomains Ωi, i = 1, ..., N . Each subdomain is a union of several finite
elements of the underlying mesh. Unknowns common to at least two subdomains are called
boundary unknowns and the union of all boundary unknowns is called the interface Γ. Let Wi

be the space of finite element functions on subdomain Ωi and put W = W1 × · · · ×WN . It is
the space where subdomains are completely disconnected, and functions on them independent
of each other. Clearly, U ⊂W .

The main idea of the BDDC preconditioner in the abstract form is to construct an auxiliary
finite dimensional space W̃ such that

U ⊂ W̃ ⊂W, (4)

and extend the bilinear form a (·, ·) to a form ã (·, ·) defined on W̃ × W̃ , such that solving the
variational problem (1) with ã (·, ·) in place of a (·, ·) is cheaper and can be split into independent
computations performed in parallel. Then the solution projected to U is used for the preconditi-
oning of (1). Space W̃ contains functions continuous at selected coarse degrees of freedom such
as values at selected nodes called corners as well as averages over edges or faces.

In computation, the corresponding matrix denoted Ã is used. It is larger than the original matrix
of the problem A, but it possesses a simpler structure suitable for direct solution methods. This
is the reason why it can be used as a preconditioner.

The projection E : W̃ → U is realized as a weighted average of values from different subdomains
at unknowns on the interface Γ followed by the discrete harmonic extension from boundary to
interior of each subdomain (see [9]).

Let r ∈ U ′ be the residual in an iteration of an iterative method. The BDDC preconditioner
MBDDC : U ′ → U in the abstract form produces the preconditioned residual v ∈ U as

MBDDC : r → v = Ew,

where w ∈ W̃ is obtained as the solution to problem

w ∈ W̃ : ã (w, z) = (r,Ez) ∀z ∈ W̃ , (5)

or in terms of matrices as
v = EÃ−1ET r. (6)
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no BDDC ILUT with threshold
method preconditioner corners only corners+faces 10−3 10−4 10−5

BICGSTAB n/a 45 22 n/a 331 10
GMRES 759 49 38 472 87 18

Table 1: Number of iterations for BICGSTAB and GMRES without preconditioning, and pre-
conditioned by BDDC and ILU, lid driven cavity.

3 Numerical results

Our parallel implementation of the BDDC preconditioner has been extensively tested on pro-
blems with symmetric positive definite matrices arising from linear elasticity (e.g. [9]). The
current version is based on the multifrontal massively parallel sparse direct solver MUMPS [1],
which is used for factorization of matrix Ã in (6). The preconditioned problem is solved by
parallel PCG method run on problem (1) reduced to interface Γ by static condensation (see [9]
for details). For the Stokes problem, matrix Ã is symmetric indefinite and as such is factorized
and the problem repeatedly solved by MUMPS representing an indefinite preconditioner.

As the first example, we select a 2D case of lid driven cavity, a popular benchmark problem for
methods for viscous flow. The case of uniform mesh of 128 ×128 Taylor–Hood finite elements
was chosen. It was divided into 8 subdomains by METIS package. Solution of the problem
by our earlier solver based on a serial frontal algorithm took 231 seconds on one 1.5 GHz
Intel Itanium 2 processor of SGI Altix 4700 computer in CTU Supercomputing Centre, Prague,
compared to 40.5 seconds on 8 processors of the same computer necessary for the solution by the
new implementation of BDDC. The stopping criterion of PCG was chosen as ∥r∥2/∥g∥2 < 10−6,
resulting in 50 PCG iterations. To investigate the performance of the BDDC preconditioner
in combination with standard iterative methods for general matrices, namely BICGSTAB and
GMRES, we have also performed several experiments with our serial code written in Matlab.
In Table 1, we compare the resulting number of iterations of these methods preconditioned by
BDDC and by the ILU preconditioner for several values of threshold τ for dropping entries in
incomplete factorization. Where ‘n/a’ is present in the table, BICGSTAB failed to converge.

In the second example, a 3D geometry of a channel with a sudden reduction of diameter is
considered. Due to the symmetry of the channel, only a quarter of it is considered in the compu-
tation. This problem consists of 3 393 Taylor–Hood finite elements with 54 248 unknowns, and it
is solved to relative residual ∥r∥2/∥f∥2 < 10−6 by 33 PCG iterations. Division into 4 subdomains
obtained by METIS and solution at Reynolds number 100 are presented in Figure 1.

4 Conclusion

We present a parallel implementation of the BDDC preconditioner and explore its applicability
to problems with indefinite matrices, namely the Stokes problem. Although the available theory
either does not cover this case, or treats it differently [4], the presented experiments suggest
promising ways for this effort. We have performed several experiments, for which PCG was
successfully used although the system was indefinite. However the reason why a breakdown was
not observed deserves further investigation. Our serial experiments also led to promising results
for combination of BDDC method with standard iterative methods for solving systems with
general matrices, such as BICGSTAB and GMRES.
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Figure 1: Division of mesh into 4 subdomains (left) and pressure with streamlines (right) for
channel with sudden reduction of diameter, only a quarter of the channel is considered for
symmetries.
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Modelováńı podzemńıho prouděńı jako sdružené úlohy

v 3D-2D-1D geometrii se složitou diskretizaćı

I. Škarydová, M. Hokr

Technická univerzita v Liberci

1 Úvod

V př́ıspěvku se zabýváme modelováńım režimu prouděńı vody v okoĺı vodárenského tunelu
v Bedřichově v Jizerských horách, v podobě sdružené úlohy podzemńıho a povrchového prouděńı.
Přitom využ́ıváme modelu s 3D-2D-1D geometríı a výpočet provád́ıme v programu Flow123D [1],
vyv́ıjeném na Technické univerzitě v Liberci. Úloha je náročná na diskretizaci kv̊uli specifickému
tvaru modelu (lokality), který je charakterizován velkým poměrem mezi vertikálńımi a hori-
zontálńımi rozměry a př́ıtomnost́ı tunelu s velmi malým pr̊uměrem proti rozměr̊um úlohy.

Úlohu řeš́ıme v rámci projektu Decovalex, který se zabývá simulaćı termo-hydro-mechano-
chemických (THMC) proces̊u za účelem analýzy hlubinného úložǐstě a bezpečného ukládáńı
jaderného odpadu. Spojitost zde nalézáme v podobném charakteru lokality z hlediska př́ırodńıch
podmı́nek, s obdobnými tunely v horninovém masivu se poč́ıtá i v hlubinném úložǐsti.

2 Popis modelu

Úloha je definována jako potenciálové prouděńı (parabolické parciálńı diferenciálńı rovnice 2.̌rá-
du) v oblasti, která je kombinaćı oblast́ı r̊uzných dimenźı Ω = Ω1 ∪ Ω2 ∪ Ω3 (tzv.

”
multidimen-

zionálńı model“, podrobněji v [2]), vyjádřené jako systém Darcyho zákona a rovnice kontinuity

ui = −Ki∇pi na Ωi , i = 1, 2, 3 (1)

κi
∂pi
∂t

−∇ · ui = qi na Ωi , i = 1, 2, 3 (2)

kde ui [m.s−1] je tzv. darcyovská rychlost (odpov́ıdá plošné hustotě toku), Ki [m.s−1] hydrau-
lická vodivost a pi [m] piezometrická výška, κ [m−1] specifická storativita, qi [s

−1] zdroje t [s]
čas [3]. Na částech hranice oblasti předepisujeme standardńı Dirichletovy a Neumannovy okra-
jové podmı́nky. Úloha je numericky řešena pomoćı smı́̌sené-hybridńı metody konečných prvk̊u,
která umožňuje přirozené zavedeńı interakce mezi jednotlivými dimenzemi v diskretizované
formě [2].

Diskretizačńı śıt’ modelu je tvořena čtyřstěny (3D oblast podzemńı vody v horninovém masivu),
2D trojúhelńıkové elementy umı́stěné na horńım povrchu 3D oblasti reprezentuj́ı tok po po-
vrchu terénu (srážkové dotace zde vystupuj́ı jako zdroje) a 1D liniové elementy potoky a řeky.
Použit́ı multidimenzionálńıho modelu pro sdruženou úlohu povrchového a podzemńıho prouděńı
zobecňuje p̊uvodńı myšlenku využit́ı 2D prvk̊u ve Flow123D jako reprezentace puklin v hornině,
i když model potenciálového prouděńı je pouze empirickou náhradou fyzikálńıch ř́ıd́ıćıch rovnic
povrchového prouděńı s omezenou přesnost́ı (předpokládáme zde jako dostatečnou pro vyjádřeńı
hydrologické bilace bez interpretace dynamiky).
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3 Úloha bedřichovského tunelu

Modely lokality bedřichovského tunelu řeš́ıme ve dvou variantách. Kv̊uli odladěńı a správné
funkčnosti nejprve model lokality bez tunelu a poté i s tunelem. Geometrie modelu (Obr. 1) je
již zadána s triangulaćı o straně 200 metr̊u, abychom mohli postihnout nerovnosti na povrchu
terénu, lokálně je triangulace zjemněná kv̊uli lepš́ımu popisu řek a daľśıch detail̊u. Odlǐsnost
úlohy je také v náročnosti diskretizace. Horizontálńı rozměry modelu jsou v řádu kilometr̊u,
naopak vertikálńı pouze několik stovek metr̊u a geometrie nav́ıc obsahuje i tunel s malým
pr̊uměrem. Proto je složitěǰśı zvolit zjemněńı śıtě tak, aby plynule přecházelo od jemné ko-
lem tunelu k hrubš́ı na okraji modelu na malé vzdálenosti, protože se tunel nacháźı pouze asi
100 metr̊u pod zemským povrchem, Tab.1. Geometrii s triangulaćı dále diskretizujeme pomoćı
element̊u o straně 150 metr̊u nebo menš́ımi. Důležité je ale zjemněńı ve svislém směru, kterého
je možno dosáhnout např́ıklad vytvořeńım předdefinovaných vrstev před generováńım śıtě.

Obrázek 1: Poloha tunelu, podle [5] a pohled shora na geometrii lokality tvořenou triangulaćı.

přibližné rozměry [m] 5250 × 6007 × 400
nadmořské výšky [m n. m.] 500 - 840
rozměry tunelu [m] (pr̊uměr, délka) 3.6 × 2590
pr̊uměrná mocnost nadlož́ı tunelu [m] 100

počet uzl̊u 150m śıt’ 4253
počet element̊u 150m śıt’ 21185
strana elementu 150m śıt’ [m] cca 150

počet uzl̊u 100m śıt’ 12573
počet element̊u 100m śıt’ 62331
strana elementu 100m śıt’ [m] cca 100

Tabulka 1: Č́ıselné charakteristiky úlohy a dvou možnost́ı diskretizace modelu, [4]

4 Závěr

V tomto modelu jsme ukázali možnost využit́ı 3D-2D-1D koncepce na úloze prouděńı a varianty
nastaveńı parametr̊u pro diskretizaci. Úloha je ve fázi rozpracovanosti, ale podle výsledk̊u (např.
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Obrázek 2: Model bez tunelu - výsledné rozložeńı tlakové výšky [m].

tlakové výšky na Obr. 2) je vidět, že voda proud́ı podle fyzikálńıch představ: částečně stéká po
povrchu a do řek, částečně se vsakuje, a na úpat́ı kopc̊u vyvěrá. Pole rychlost́ı je na názornou
vizualizaci složitěǰśı.

Poděkováńı: Tato práce vznikla za podpory Ministerstva pr̊umyslu a obchodu, projekt
č. FR-TI1/362.
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Probabilistic system approach to LC-MS analysis
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1 Introduction

The cell state may be ultimately characterized by state of metabolomic and signaling pathways
and by state of formation of patterns in the cellular structures. These parameters comple-
ment each other. The pathways and metabolite transformations define and maintain the cellular
structures. However, the current state of knowledge does not allow to devise state of pathways
from observation of structure and vice versa. The state of metabolite fluxes is aspect of the
far-from equilibrium physico-chemical state of the cell or whole culture. A chemical analysis of
huge amount of collected data from measured samples is difficult and it take a long time to be
done manually. Automatics tools could be helpful and are able to save important part of the
time. This paper is focussed on automatic processing of liquid chromatography in combination
with mass spectrometry. A set of tools was developed: e.g. noise reduction, peaks detection or
substance comparison.

Today, the intensity y produced by the spectrometer is usually shown as two 2D graphs, y1(t)
and y2(m), where t is time and m is the mass to charge ratio. We take a more general approach,
looking at peeks in 3D, y(t,m). At each point (t,m), where t is the retention time and m is mass
m/z, the output intensity of the spectrometer is composed of several parts:

y(t,m) = s(t,m) + q(t,m) + r(t,m), (1)

where y(t,m) is the useful signal, s(t,m) is the useful signal, q(t,m) is the systematic noise
ps(t,m) = probablility that y(t,m) is useful signal, s(t,m) and r(t,m) is the random noise
pq(t,m) = probablility that y(t,m) is not random noise, r(t,m) = 0.

Exact properties of each component, both theoretical and practical, are documented in the
comment section of the code. Additional discussion of the individual steps was presented in [1].

Our software automatically evaluates the given instrument, detects peaks, and calculates the
probability of error for individual peaks. There are no artificial, user-defined parameters. The
program not only quantifies the accuracy of the interpretation, but it also detects many peaks
which, using the existing methods, are not distinguished from the noise. Exactly the same algori-
thm is used to evaluate the preliminary blank run, and the peaks detected in this measurement.
Then, in the regular runs, if a similar peak is detected for the same (t,m) point, the peak is
eliminated — it is a peak associated with the mobile phase and washing of the colon. Many
software packages simply subtract y(t,m) of the blank from y(t,m) of the sample output, but
that clearly makes no sense.

Typical measurement output data from HPLC/MC is set of points in three dimensional space
which is defined by axes: retention time, molecular mass and intensity. Analytes elute in every
retention time point from HPLC column, obviously because of delay proportional to some che-
mical property, and enter the MS ionization chamber. Intensity for each detectable mass is
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Figure 1: Mathematical space of system atributes.

Figure 2: Filtered LC-MS measurement with probability > 75 % in classic graphical represen-
tation.

measured inside the MS and this value represented amount of ionized molecules of individual
mass in exact retention time point [2, 3, 4].

2 Conclusion

Ours approach is focused on proper characterization of presented noise. Noise produced by mobile
phase is characterised separately to random noise contribution. Information about the both of
noise characterizations were integrated into probability factor. All algorithms were implemented
in MATLAB environment [5].
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Using graphic cards for high-performance computing tasks

J. Vaněk, J. Urban, Dalibor Štys

Institute of Physical Biology, Nové Hrady

1 Introduction

Recently, graphics hardware (GPU) architectures have begun to emphasize versatility, offering
rich new ways to programmable reconfigure the graphics engine. In this abstract, we introduce
whether current graphics architectures can be applied to problems where general-purpose vector
processors might traditionally be used. Comparing the speed of graphics cards to standard CPUs,
it illustrate high raw performance power, as well as room for improvement speed in many tasks.
The main features and tricks of the GPU programming is described below. Based on our results
and current trends in GPU development, we believe that efficient use of graphics hardware will
become increasingly important to high-performance computing on commodity hardware.

2 Implementation of algorithms on GPU

Actual generation of graphic cards could be used for very realistic 3D computer gaming. However,
their high computation power can be used also for another applications - for high performance
computing [1]. Comparison of raw computation power between GPUs and CPUs are illustrated
on figure 1.

Figure 1: An comparison between GPUs and CPUs raw computation power in recent years.
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Currently, two high-level GPU programming technologies from both main manufactures are
usable. Brook+ (now called ATI Stream SDK) from AMD/ATI [2] and CUDA from NVIDIA [3].
The algorithm was done in CUDA because of NVIDIA hardware. GPU programming is not so
easy especially if maximum speed is necessary. But the final speed of implementation satisfies
more sophisticated programming style.

The key to high performance of implementation is to fit the algorithm to GPU highly-parallel
architecture. The architecture of NVIDIA GPUs is illustrated on figure 2.

Figure 2: CUDA double-hierarchy data-parallel programming model.

For the architecture the double-hierarchy is typical. Whole GPU is the set of multiprocessors as
well as the multiprocessor (MP) is a set of eight scalar processors (SP). All multiprocessors can
access data in the device memory. For reading they can employ texture or constant cache. SPs
inside one multiprocessor can utilize excepting its registers also joint shared cache. Read and
write accesses can be synchronized and the SPs inside one multiprocessors can cooperate this
way. The survey of all memory kinds are listed for better understanding:

• Host (CPU) memory — “normal” memory where all data have to be prepared before
transfer to GPU memory through PCI-Express bus. The results are transferred back from
GPU to host memory after computation. It is faster to transfer less amount of larger
memory blocks than transfer high number of small blocks. Keep in mind that the bus is
relatively very slow and could be a bottle-neck of the computation performance.
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• Device (GPU, global) memory — main memory installed on graphics card. It has
high delay therefore the implementation has to look at this fact. Random read/write of
single data-types affects the performance a lot. Using block read/write (“coalesced access”)
is necessary. The second option is to use constant or texture cache.

• Constant cache — limited amount of this kind of memory can be used for reading. It is
advisable to use it for example for look-in tables.

• Texture cache — read-only data in device memory can be cached via texture cache. It
can be allocated either linear memory or in 2D manner. It is advisable to use it for all
data which are read-only.

• Shared memory — limited amount of on-chip memory which is shader-clocked and it
belongs to individual multiprocessor. It is accessible only for SPs of this multiprocessor.
The implementation should avoid “bank conflicts” which reduce performance. Appropriate
using of this kind of memory can be a key part of high-performance implementation.

• Registry — memory which belongs to individual SPs. They are used to store the internal
variables.

Figure 3: CUDA double-hierarchy data-parallel programming model.

143



CUDA data-parallel programming model is based on the hardware double-hierarchy. The data
have to be split into algorithmically independent parts on two levels. At the first level the data
are split into grid of blocks. Each block is processed with the same algorithm which is called
“kernel”. During processing of the block several number of thread is running. It is the second
level of the hierarchy (it is illustrated in fig. 3). All threads which evaluate one block are running
on one multiprocessor and they can utilize its shared memory for data interchange.

To manage this programming model, SIMT (single-instruction multiple thread) architecture is
employed. The multiprocessor maps each thread to one SP core, and each scalar thread executes
independently with its own instruction address and register state. The multiprocessors threads
are executed in parallel groups. The programmer has to implement its algorithm this parallel
way too. At least 32 threads should do the same work.

3 Conclusion

This abstract introduces abilities of actual generation of graphic cards and shortly describes main
programming features and tricks how to achieve good effectivity of the algorithm. Our practical
experiences with GPU programming lead us to conclusion that it is a promising technology.
Moreover, it is usable way how to cheaply speed-up many algorithms and applications.
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Behaviour of the augmented GMRES method

J. Źıtko, D. Nádhera

Charles University, Faculty of Mathematics and Physics, Prague

1 Introduction

Let us consider the linear system

Ax = b, A ∈ Cn×n, x, b ∈ Cn, (1)

where Cn denotes the complex n−dimensional space. It is assumed that A is a nonsingular,
non-Hermitian and in praxis usually large and sparse matrix.

The restarted GMRES method with restart m, usually denoted by GMRES(m), is a well known
and popular iterative process for solving above mentioned systems and will be a base for the next
consideration. However, restarting slows down the convergence and in many cases GMRES(m)
causes stagnation. The research for reducing negative effects of restart develops in several ways.
Let us mention the principal two: construction of a good preconditioner or augmentation of the
current Krylov subspace. In general, both processes are not stationary. The preconditioner and
the additional subspace are updated after each restart.

We will consider the GMRES(m, k) method, i.e., the restarted GMRES with restartm where the
subspace of dimension k is added in each restart. The additional subspace will be constructed on
the base of information gathered in previous restarts. The classical estimate of the norm of the
residual vector leads to the following deduction. The following text can be found in the book [3] on
the page 55. “Eigenvalues all around the origin are bad because (by the maximum principle) it is
impossible to have a polynomial that is 1 at the origin and less than 1 everywhere on some closed
curve around the origin.” On the opposite side “eigenvalues tightly clustered about some single
point (away from the origin) are good”. Hence the idea to remove the eigenvalues that are small
in magnitude from the spectrum of A seems to be natural. The technique how to do it is studied
by many authors. Let us mention [5, 1, 11] here. The implementation presented in [5] generates
first the Krylov subspace and then adds approximate eigenvectors corresponding to the smallest
eigenvalues in magnitude. In this paper, k generalized harmonic Ritz values are calculated and
the corresponding eigenvectors are added to the Krylov subspace. The GMRES(m, k) method is
introduced in Section 2. The numerical behaviour of spaces, which are added, is studied in the
next Section 3. The non-stagnation conditions are mentioned and numerically tested in Section 4.
Some comments to the generalization of non-stagnation conditions are in the last section.

If Y ∈ Cn×k, then Range(Y ) is the space generated by the columns of Y . In the whole paper
the following notational conventions will be used: x0 . . . an initial approximation, r0 = b− Ax0
the corresponding residual, it is supposed that r0 ̸= 0, v1 = r0/∥r0∥, ∥.∥. . . the Euclidean norm,
Km(A, r0) =Range([r0, Ar0, . . . , A

m−1r0]) . . . the Krylov subspace, Sn . . . the unit sphere in Cn,
Pm . . . the set of polynomials of degree m, P0

m . . . all polynomials from Pm which equal zero
in zero. Let ∅ ̸= Z ⊆ Cn be a subspace.Define the norm ∥A∥Z = sup

x∈Z∩Sn

∥Ax∥ and WZ(A) =

{xHAx|x ∈ Z ∩ Sn} is the field of values of A, with respect to Z. Let s := m + k. It is
assumed that all Krylov and augmented spaces have maximal dimension and that the matrix A
is diagonalizable. The following process could be analyzed without the last assumption. However,
in this case, the formulas would be more complicated without any new theoretical contribution.
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2 Description of GMRES(m, k)

Algorithm 2.1. One restarted run of GMRES(m, k).

1 Input Let x
(j)
0 and r

(j)
0 be the starting vector and corresponding residual vector at the begin-

ning of the jth restart. Let the space Range(Yj) where Yj = [y
(j)
1 , y

(j)
2 , . . . , y

(j)
k ] be added

to Km(A, r
(j)
0 ). Put v1 := r

(j)
0 /∥r(j)0 ∥.

2 Construction of the orthogonal basis Calculate for i = 1, 2, . . . , s the vectors vi+1 =
P⊥
i Aui/∥P⊥

i Aui∥ where

• for i ≤ m we substitute ui := vi and P
⊥
i denotes the orthogonal projection onto the

orthogonal complement of the Krylov subspace Ki(A, v1);

• for m+ 1 ≤ i ≤ s we put ui = y
(j)
i−m and P⊥

i denotes the orthogonal projection onto
the orthogonal complement of the space Range([v1, v2, . . . , vi]).

The motivation for this more general formulation can be found in [9] and [11]. The above
procedure is the shortest formulation of the idea of all known processes for the construction

of an orthonormal basis of Range([v1, Av1, . . . , A
mv1, Ay

(j)
1 , Ay

(j)
2 , . . . , Ay

(j)
k ]).

3 Output Define the matrices W , W̃ and the (s+1)× s Hessenberg matrix H̃ by the relations

W = [v1, v2, . . . , vm, y
(j)
1 , . . . , y

(j)
k ], W̃ = [v1, v2, . . . , vm, vm+1, . . . , vs+1], AW = W̃ H̃.

• The new iteration x
(j)
s = x

(j)
0 + ws, where r

(j)
0 −Aws⊥ Range (AW ).

• The new matrix Yj+1 = [y
(j+1)
1 , y

(j+1)
2 , . . . , y

(j+1)
k ] is calculated by the following way:

Yj+1 =WG, where G = [g1, g2, . . . , gk] and gi for i ∈ {1, 2, . . . , k} solve the eigenvalue
problem

WHAHWgi = θ−1
i WHAHAWgi

The k smallest harmonic Ritz values, denoted θi, i = 1, 2, . . . k, with the correspondig
harmonic Ritz vectors gi are calculated.

For more details see for example [5], [1]. The algorithm of GMRES(m, k) is now obvious. Now
we will study the numerical behaviour of the sequence Y1,Y2, . . . , where Yj :=Range(Yj). The
convergence was studied in special cases for example in [8]. The problem we focus is to find
cheaply an integer p > 0 such that the subspaces Yj and Yj+1 do not differ to much. Various
tests could be considered for example whether the gap Θ(Yj ,Yj+1) ≤ tol ∀ j > p where tol is
a given tolerance.

3 Numerical experiments

More numerical examples can be found in [6]. Let the upper bidiagonal matrix A has 0.1, 0.2,
0.3, 4. . . , 1000 on the main diagonal and the superdiagonal elements are equal 0.1. The Figure 1
shows that GMRES(15) stagnates but GMRES(m, k), (where m+ k = 15), converges if k ≥ 3.
The approximate eigenvectors are calculated according to the part 3 in Algorithm 2.1. This
experiment leads to the second stage, where the improving of Yj terminates after p restarted runs
and Yp is added in all the next restarts. The Figure 2 leads us to investigate the behaviour of the
numbers Θ(Z, AYj), ∥Ay(j) − θy(j)∥/∥y(j)∥ (see Figure 4) and Θ(AYj , AYj+1). The symbol Z
denotes the eigenspace corresponding to the three small eigenvalues. Index j denotes the jth
restart.
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The matrix A has the same structure as in the previous case, only the dimension will be smaller,
in this case A ∈ R100×100. The behaviour of Θ(Z, AYj) is drawn in Figure 3. The Figure 4
describes the numbers ∥Ay(j) − θy(j)∥/∥y(j)∥ for three smallest harmonic Ritz values θ1 (the
curve above), θ2 (the curve in the middle) and θ3. The gap between the spaces AYj and AYj+1

illustrates Figure 5.
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4 Estimates of residual vector

More detailed calculations show that the convergence of GMRES(m, k) algorithm can be very
slow for small k or when a wrong spaces Yj are added. The behaviour of the algorithm is well
described by the estimates of the residual norm that are independent on the number of restart.
The following theorem [12] generalize the result of [4] and the presented estimate approximate
the course of GMRES(m, k) very well.

Theorem 4.1 Let m, k, s ∈ {1, 2, . . . , n − 1}, s = m + k < n, j > 1. Let the subspace
Yk =Range(Yk) be added to the corresponding Krylov subspace in the jth restart.
1) Then the following inequalities

∥r(j)s ∥2/∥r(j)0 ∥2 ≤ min
q∈P0

m

1− min
w∈Sn

w⊥AYk

|wHq(A)w|2

∥q(A)w∥2

 ≤ min
q∈P0

m

1− min
w∈Sn

w⊥AYk

|wHHqw|2

∥q(A)w∥2

 (2)

hold, where Hq is the Hermitian part of q(A). If Sq denotes the skew-Hermitian part of q(A) then
we obtain further estimates substituting Sq instead of Hq in (2). Let us remark that wTSqw = 0
for real vectors and matrices.
2) Let m be an integer, m + k < n,. If a polynomial q ∈ P0

m exists such that the system of
equations

wHq(A)w = 0 or wHHqw = 0 or wHSqw = 0 (3)

does not have any solution in the set (AYk)
⊥ ∩ Sn, then GMRES(m, k) is convergent.

5 Conclusion

The presented theorem is an example of estimates that guarantee the convergence in the case that
Hq or Sq is positive or negative definite. Further generalization yields the paper [7]. The genera-
lization of the basic theorem in the just mentioned paper will be formulated for GMRES(m, k)
now. Let q ∈ P0

m, q(A) = Hq+iSq, where Hq and Sq is the Hermitian and skew-Hermitian part
of the matrix q(A), respectively. It is easy to see that

xHq2(A)x = xH(Hq + iSq)
2x = ∥Hqx∥2 − ∥Sqx∥2 + i2xHLqx. (4)

where i2 = −1 and Lq = (HqSq + SqHq)/2 = (HqSq + (HqSq)
H)/2 is the Hermitian part of the

matrix HqSq. Let the subspace Yk be added to the considered Krylov subspace in all restarts
and define Z = (AYk)

⊥, Hq(Z) = {Hqz|z ∈ Z} and Sq(Z) = {Sqz|z ∈ Z}. It is easy to see that{
∥Hqx∥ < ∥Sqx∥ ∀x ∈ Z ∩ Sn

}
⇔
{
Re(xHq2(A)x) < 0 ∀x ∈ Z ∩ Sn

}
, (5)

and analogous relation could be written if ∥Sqx∥ < ∥Hqx∥. Because the set Z ∩ Sn is compact,
the field of values WZ(q

2(A)) does not contain 0 if ∥Sqx∥ < ∥Hqx∥ or ∥Sqx∥ < ∥Hqx∥ or if
xHLqx ̸= 0∀x ∈ Z ∩ Sn.

If Sq is nonsingular, then

{
∥Hqx∥ < ∥Sqx∥ ∀x ∈ Z ∩ Sn

}
⇔
{∥∥∥∥HqS

−1
q

y︷ ︸︸ ︷
Sqx

∥Sqx∥

∥∥∥∥ < 1 ∀x ∈ Z ∩ Sn
}

⇔
{ ⇔∥HqS

−1
q ∥Sq(Z)<1︷ ︸︸ ︷

sup
y∈Sq(Z)∩Sn

∥HqS
−1
q y∥ < 1

}
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and analogous relation could be written if if the matrix Hq is nonsingular and ∥Sqx∥ < ∥Hqx∥.
The just formulated thoughts for the matrix q(A) form another proof of the original result of
Simoncini and Szyld (see [7]) for the matrix A.

Theorem 5.1 Let q ∈ P0
m be arbitrary. Let the subspace Yk of dimension k be added to the

Krylov subspace in all restarted runs. Define Z = (AYk)
⊥. Let the matrix Sq is nonsingular and

∥HqS
−1
q ∥Sq(Z) < 1 or the matrix Hq is nonsingular and ∥SqH−1

q ∥Hq(Z) < 1 or xHLqx ̸= 0 ∀x ∈
Z ∩ Sn.
Then GMRES(2m, k) is convergent.
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